98%
921
2 minutes
20
Multidrug-resistant , including carbapenemase producers, are currently spreading in health care facilities and the community. The Bichat Claude Bernard hospital in Paris faced a prolonged NDM-producing (NDM-CPE) outbreak. Whole-genome sequencing (WGS) was performed on all isolated NDM-CPE to evaluate its benefits for outbreak surveillance and comprehension. All NDM-CPE isolates collected during the outbreak period (August 2016 to January 2018) were sequenced using the Illumina NextSeq platform. Gene content and core genomes were compared. Genomics results underwent epidemiological analysis which classified NDM-CPE cases as imported (positive sample during the 48 h after admission), hospital acquired, or uncertain. Over the epidemic period, 61 patients were colonized or infected with 81 distinct NDM-CPE isolates. Klebsiella pneumoniae was the most common species ( = 52, 64%), followed by Escherichia coli (13.5%) and other species (22.5%). In all, 43/52 (83%) K. pneumoniae isolates were clonal (≤18 single nucleotide polymorphisms [SNPs] except for three isolates) and belonged to ST307. The IncFIIK [K2:A-/B-] plasmid carrying present in all ST307 K. pneumoniae isolates was also detected in 18 other NDM-CPE isolates. Additionally, eight clonal ST144 Klebsiella oxytoca (≤18 SNPs) isolates lacking the epidemic plasmid were observed. The WGS analyses confirmed the acquired and imported cases except for two patients and resolved uncertain cases, which all turned out to be hospital acquisitions. WGS coupled with epidemiological analysis unraveled three epidemic phenomena: mainly the spread of a clonal ST307 K. pneumoniae strain and its conjugative plasmid carrying but also the unexpected clonal spread of an ST144 K. oxytoca strain. Carbapenemase-producing (CPE) can spread and cause outbreaks in health care facilities, resulting in increased lengths of stay and morbidity. Control of outbreaks requires epidemiological surveillance, usually based on microbiological screening and patient follow-up. These data are sometimes insufficient to identify the routes of dissemination. There is therefore a need for more accurate tools such as whole-genome sequencing (WGS), which allows comparison of isolates but also plasmids carrying resistance with a high definition. In this work, we retrospectively sequenced the genomes of all NDM-producing isolated during a prolonged NDM outbreak in our hospital. We demonstrated the value of combining WGS with epidemiological data that unveiled the multiple mechanisms of dissemination involved in the outbreak and confirmed transmission cases. This work reinforces the potential of WGS in outbreak surveillance and suggests that it could improve outbreak control if used in real time by confirming transmission cases more rapidly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045244 | PMC |
http://dx.doi.org/10.1128/spectrum.02287-21 | DOI Listing |
Front Microbiol
August 2025
Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, Guangxi, China.
A bacterial strain (No. 20230510) was isolated from the kidneys of diseased in Guangxi, China, since 2023. Artificial infection experiments demonstrated that this strain caused the observed disease in .
View Article and Find Full Text PDFFront Genet
August 2025
Federal Medical and Biologicl Agency, Moscow, Russia.
Background: Familial hypercholesterolemia (FH) is a prevalent hereditary disorder, with its monogenic form linked to an elevated risk of early-onset ischemic heart disease. Evaluating the prevalence and penetrance of pathogenic and likely pathogenic variants associated with this disorder would provide valuable information supporting routine FH screening of the general population. Such informed screening would facilitate early identification of at-risk individuals, enabling timely intervention and management.
View Article and Find Full Text PDFFront Med (Lausanne)
August 2025
Department of Pathology and Laboratory Diagnosis, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia.
Tuberculosis (TB) remains one of the leading causes of infectious disease mortality worldwide, increasingly complicated by the emergence of drug-resistant strains and limitations in existing diagnostic and therapeutic strategies. Despite decades of global efforts, the disease continues to impose a significant burden, particularly in low- and middle-income countries (LMICs) where health system weaknesses hinder progress. This comprehensive review explores recent advancements in TB diagnostics, antimicrobial resistance (AMR surveillance), treatment strategies, and vaccine development.
View Article and Find Full Text PDFInfect Drug Resist
September 2025
Department of Emergency Medicine, Affiliated Lu'an Hospital of Anhui Medical University, Lu'an, Anhui, 237005, People's Republic of China.
Hypervirulent is a recently identified pathotype characterized by high virulence and rapid dissemination. It is associated with invasive infections at multiple anatomical sites, including liver abscesses, necrotizing fasciitis, meningitis, myositis, and endophthalmitis. It has emerged as a significant threat to public health due to its aggressive clinical course and high mortality rate.
View Article and Find Full Text PDFVet World
July 2025
Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
Background And Aim: is a multidrug-resistant (MDR) zoonotic pathogen increasingly implicated in infections in both humans and animals, including avian species. Raptors, particularly peregrine falcons, are vulnerable due to their exposure to diverse environments and intensive management practices. This study aimed to identify isolates from peregrine falcons in Saudi Arabia and to characterize their genomic features, phylogenetic relationships, and antimicrobial resistance (AMR) profiles using whole-genome sequencing (WGS).
View Article and Find Full Text PDF