98%
921
2 minutes
20
The development of nanotechnology has propagated the use of nanoparticles (NPs) in various fields including industry, agriculture, engineering, cosmetics, or medicine. The use of nanoparticles in cosmetics and dermal-based products is increasing owing to their higher surface area and unique physiochemical properties. Silver (Ag) NPs' excellent broad-spectrum antibacterial property and zinc oxide (ZnO) NPs' ability to confer better ultraviolet (UV) protection has led to their maximal use in cosmetics and dermal products. While the consideration for use of nanoparticles is increasing, concerns have been raised regarding their potential negative impacts. Although used in various dermal products, Ag and ZnO NPs' skin sensitization (SS) potential has not been well-investigated using alternative test methods. The human Cell Line Activation Test (h-CLAT) that evaluates the ability of chemicals to upregulate the expression of CD86 and CD54 in THP-1 cell line was used to assess the skin sensitizing potential of these NPs. The h-CLAT assay was conducted following OECD TG 442E. NPs inducing relative fluorescence intensity of CD86 ≥ 150% and/or CD54 ≥ 200% in at least two out of three independent runs were predicted to be positive. Thus, Ag (20, 50, and 80 nm) NPs and ZnO NPs were all predicted to be positive in terms of SS possibility using the h-CLAT prediction model. Although further confirmatory tests addressing other key events (KEs) of SS adverse outcome pathway (AOP) should be carried out, this study gave an insight into the need for cautious use of Ag and ZnO NPs based skincare or dermal products owing to their probable skin sensitizing potency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8915822 | PMC |
http://dx.doi.org/10.3389/ftox.2021.649666 | DOI Listing |
Open Med (Wars)
August 2025
Department of Burns and Wound Repair, Weifang People's Hospital, Shandong Second Medical University, Weifang, China.
Objective: Hypertrophic scars (HS) are a fibrotic proliferative disorder that results from an abnormal wound healing process, presenting significant challenges for clinical intervention. The primary characteristics of HS include excessive collagen deposition and angiogenesis. In recent years, the study of mesenchymal stem cells (MSCs) and their derived exosomes has emerged as a prominent area of research within the academic community.
View Article and Find Full Text PDFVirology
September 2025
Department of Microbiology, Faculty of Pharmacy, Ahram Canadian University (ACU), 6th October City, Giza, 12566, Egypt. Electronic address:
Background: Carbapenem-resistant Acinetobacter baumannii (CRAB) has recently become a serious cause for global concern because of non-susceptibility to multiple antimicrobial classes, its prevalence in nosocomial infections, and the lack of effective treatments against such a pathogen.
Methods: This study isolated two lytic phages from hospital sewage, purified, propagated, characterized morphologically by transmission electron microscopy, and genomically by Oxford Nanopore Sequencing. The phage lysates were then formulated individually as carboxymethylcellulose (CMC) 5 % w/v hydrogels.
Injury
August 2025
Department of Trauma Surgery, University and University Hospital of Zurich, Raemistr. 100, 8091 Zurich, Switzerland; Center for Preclinical Development, University and University Hospital of Zurich, Raemistr. 100, 8091 Zurich, Switzerland. Electronic address:
Background: Critical size bone defects represent a clinical challenge, associated with considerable morbidity, and frequently trigger the requirement of secondary procedure. To fill osseous gaps, multiple steps are required, such as proliferation and differentiation on the cellular level and the building of extracellular matrix. In addition, the osteogenic potential of cell-derived extracellular matrices (CD-ECM) is known to enhance bone healing.
View Article and Find Full Text PDFBiomater Adv
September 2025
Key Laboratory of Artificial Intelligence & Micro Nano Sensors, Shanxi Province, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, C
This study addresses critical technical challenges in fabricating functional pigmented skin models via 3D bioprinting through the synergistic integration of droplet-based deposition and precision motion control. A hybrid bioprinting strategy was developed to create multilayer biomimetic architectures: the dermal layer was fabricated through extrusion of gelatin methacryloyl-polyacrylamide (GelMA-PAM) composites, while the epidermal layer incorporated precisely patterned melanocyte-laden GelMA-PAM arrays deposited via microvalve technology, subsequently solidified and populated with keratinocytes. To enhance printing reliability, a fractional-order proportional-integral control system optimized through particle swarm optimization (PSO-FOPI) was implemented, significantly improving motor speed regulation and positioning accuracy.
View Article and Find Full Text PDFAnn Plast Surg
September 2025
From the University of Tennessee Health Sciences Center-College of Medicine, Chattanooga, TN.
Introduction: Implant-based breast reconstruction after skin-sparing mastectomy remains one of the most frequently used methods of breast reconstruction in the US. Patients with large, ptotic breasts often face poorer outcomes. We hypothesized that implant-based breast reconstruction with auto-augmentation techniques can minimize problems with acellular dermal matrices (ADM) by using less, and providing the benefit of prepectoral placement.
View Article and Find Full Text PDF