NMR characterization of structure and moisture sorption dynamics of damaged starch granules.

Carbohydr Polym

Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba, Argentina; CONICET, Instituto de Física Enrique Gaviola (IFEG), Córdoba, Argentina. Electronic address:

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Among the many biopolymers that constitute food products, starch is one of the most common. Starch granules are often damaged in the milling process, which affects the final product quality, mainly due to changes in water adsorption properties. In this work, the crystallinity degree of wheat starch samples as a function of the mechanical damage is determined by low field H NMR. We also introduce the use of single-sided NMR to determine granular swelling, water distribution and sorption dynamics of the samples. Results show that the crystallinity of the samples decreases with the milling. We also observed that swelling index and sorption capacity values are higher in the milled samples than in the native starch. Our experiments show how single-sided NMR is a valuable tool to provide information on dynamic processes not only in starch, but also in many carbohydrate polymeric samples with the additional benefit of spatial resolution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2022.119220DOI Listing

Publication Analysis

Top Keywords

sorption dynamics
8
starch granules
8
single-sided nmr
8
starch
6
samples
5
nmr
4
nmr characterization
4
characterization structure
4
structure moisture
4
moisture sorption
4

Similar Publications

Source, dynamics, and risks of microplastics and nanoplastics in agricultural groundwater systems.

An Acad Bras Cienc

September 2025

Federal University of Minas Gerais, Department of Sanitary and Environmental Engineering, 6627, Antônio Carlos Avenue, Campus Pampulha, 31270-010 Belo Horizonte, MG, Brazil.

Micro- and nanoplastics (MNPs) are emerging contaminants increasingly recognized for their environmental and health implications. While surface water systems have been extensively studied, the presence, behavior, and impacts of MNPs in groundwater remain underexplored, despite its critical role as water source worldwide. The findings in this review highlight that agricultural activities, particularly plastic mulches, pesticides containers, fertilizer bags, greenhouses, are major sources of MNP.

View Article and Find Full Text PDF

Flexible metal-organic frameworks (MOFs) have emerged as a new generation of porous materials and are considered for various applications such as sensing, water or gas capture, and water purification. MIL-88 A (Fe) is one of the earliest and most researched flexible MOFs, but to date, there is a lack in the structural aspects that govern its dynamic behaviour. Here, we report the first crystal structure of DMF-solvated MIL-88 A and investigate the impact of real structure effects on the dynamic behaviour of MIL-88 A (Fe), particularly upon water adsorption.

View Article and Find Full Text PDF

The water activity of milk powders is a critical parameter for predicting quality and safety, but some retailers in the supply chain may be limited to measuring moisture content, which can be easier and more affordable. Moisture sorption isotherms relate moisture content to the corresponding water activity. In this study, moisture adsorption and desorption isotherms were determined for nonfat dry milk (NFDM) and milk protein concentrate (MPC-85) powder samples at ambient and elevated temperatures via the modernized dynamic dewpoint isotherm (DDI) method.

View Article and Find Full Text PDF

Real-Space Quantitative Molecular Analysis at Single-Molecule Resolution.

J Am Chem Soc

September 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu P. R. China.

Advances in molecular analysis and characterization techniques should revolutionize the methods for scientific exploration across physics, chemistry, and biology, fundamentally overturning our understanding of interactions and processes that govern molecular behavior at the microscopic level. Currently, the absence of a molecular analysis method that can both quantify molecules and achieve single-molecule spatial resolution hinders our study of complex molecular systems in sorption and catalysis. Here, we propose a quantitative analysis strategy for small molecules confined in ZSM-5, a zeolite material extensively used in catalysis and gas separation, based on low-dose transmission electron microscopy.

View Article and Find Full Text PDF

Short water transit times determine the fate of veterinary pharmaceuticals in lowland catchments.

J Contam Hydrol

August 2025

Faculty of Geoscience and the Environment, University of Lausanne, Lausanne, Switzerland; Laboratory of Ecohydrology ENAC/IIE/ECHO, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Livestock animals are commonly treated with veterinary pharmaceuticals (VPs), and their residues often enter the environment through manure applied to soil. A fraction of these residues may be further transported to surface waters through intricate transport mechanisms. Here, we examine the temporal dynamics of VPs in lowland surface waters of an agricultural catchment in the Netherlands, utilizing information on VPs concentrations in manure (2015-2020) and surface water measurements collected in 2020.

View Article and Find Full Text PDF