Interactions of N-hydroxyamphetamine with an iron porphyrin: A unique intramolecular H-bond probed by DFT calculations.

J Inorg Biochem

Price Family Institute of Structural Biology, Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States of America. Electronic address:

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hydroxylamine (NHOH) and its N-substituted derivatives (RNHOH) are important biological intermediates in the global N cycle. Heme plays a central role in the binding and activation of these hydroxylamines. We report the crystal structures of N-hydroxyamphetamine (AmphNHOH) in complex with Fe and Co heme models. We demonstrate a previously unrecognized internal H-bond interaction between a hydroxylamine RNHO-H group and a porphyrin N-atom. We utilize density functional theoretical (DFT) calculations to show that the conformations with the internal H-bond represent global minima along the potential energy surfaces for both the Fe and Co heme models. A natural bond orbital (NBO) analysis reveals a donor π (por) to acceptor σ* (O-H) interaction of 3.04 kcal/mol for Fe, accounting for 11% of the total heme-AmphNHOH interaction energy. Our DFT calculations with the parent Fe-NHOH suggests that the presence of internal H-bonds between hydroxylamine (R/H)NHOH moieties and heme N-atoms may be more common than previously recognized.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2022.111779DOI Listing

Publication Analysis

Top Keywords

dft calculations
12
heme models
8
internal h-bond
8
interactions n-hydroxyamphetamine
4
n-hydroxyamphetamine iron
4
iron porphyrin
4
porphyrin unique
4
unique intramolecular
4
intramolecular h-bond
4
h-bond probed
4

Similar Publications

Degradation and ecological risk of a novel neonicotinoid insecticide imidaclothiz in aquatic environments: Kinetics, photodegradation and hydrolysis pathways, mechanism and metabolites toxicity evaluation.

Pestic Biochem Physiol

November 2025

Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China; Institute of Ecological Environmental Protection and Pollution Remediation Engineering, Anhui Agricultural U

Neonicotinoid insecticides residuals pose a threat to aquatic ecosystems and human health. Imidaclothiz, as a novel neonicotinoid pesticide, the metabolic mechanisms in aquatic environments was unclear. This study investigated the degradation characteristics of imidaclothiz in both pure and actual water, and analyzed the photodegradation and hydrolysis metabolites of imidaclothiz in aquatic environments and assessed their toxicity.

View Article and Find Full Text PDF

A ratiometric dual-channel fluorescent probe for selective Zn/Cd sensing: Applications in food quality control, real-time monitoring in living cells, and mice.

Anal Chim Acta

November 2025

State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China; Zhangjiagang Institute of Nanjing Tech University, Suzhou, 215600, PR China. Electronic address:

Background: Zinc (Zn) and cadmium (Cd) ions are ubiquitous in industrial and daily life. Despite their critical impact on food safety and human health, current probes face significant limitations in simultaneously detecting both ions in complex food matrices.

Results: Herein, we successfully developed a pyrene-based FRET ratiometric fluorescent probe QP for the highly selective detection of Zn and Cd.

View Article and Find Full Text PDF

Chemically and Electromagnetically dual-enhanced COFs-Au@AgNPs SERS sensor integrated with deep learning for ultrasensitive detection of neonicotinoid pesticides.

Anal Chim Acta

November 2025

Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China.

Background: With the development of modern agriculture, neonicotinoid pesticides have been widely used due to their high efficiency and strong systemic properties. However, excessive use leads to the accumulation of residues in the food chain, threatening the ecosystem and human health. Pesticide residues are easily accumulated in oilseed crops and become concentrated during the edible oil refining process.

View Article and Find Full Text PDF

Fe-X (X=C, P, S) atom pair-decorated g-CN monolayers for sensing toxic thermal runaway gases in lithium-ion batteries: A DFT Study.

Environ Res

September 2025

Jiangxi Provincial Key Laboratory of High-Performance Steel and Iron Alloy Materials,Jiangxi University of Science and Technology, Ganzhou 34100, China; School of Metallurgy Engineering, Jiangxi University of Science and Technology, Ganzhou 34100, China. Electronic address:

The thermal runaway of lithium-ion batteries (LIBs) releases a mixture of toxic and explosive gases, posing severe safety risks. High-performance sensors are critical for the early detection of these thermal runaway gases (TRGs) to prevent accident escalation. Herein, we systematically investigate Fe-X (X=C, P, S) atomic pair-modified g-CN (FCN, FPN, FSN) monolayers as potential sensing materials for six TRGs (CO, CO, H, CH, CH, and CH) using first-principles calculations.

View Article and Find Full Text PDF

The persistent presence of the pharmaceutical pollutant nilutamide (NLT) in environmental and biological systems poses a serious threat to ecosystems and human health, necessitating efficient and sustainable detection strategies. In this study, we present a nanoengineered SrWO@MXene electrocatalyst as a high-performance platform for electrochemical sensing. The hybrid material seamlessly integrates the catalytic activity and electrochemical stability of SrWO with the exceptional conductivity and tunable surface chemistry of MXenes, resulting in a synergistic architecture optimized for rapid and selective NLT detection.

View Article and Find Full Text PDF