98%
921
2 minutes
20
Fetal growth restriction (FGR) is associated with long-term neurodevelopmental disabilities including learning and behavioral disorders, autism, and cerebral palsy. Persistent changes in brain structure and function that are associated with developmental disabilities are demonstrated in FGR neonates. However, the mechanisms underlying these changes remain to be determined. There are currently no therapeutic interventions available to protect the FGR newborn brain. With the wide range of long-term neurodevelopmental disorders associated with FGR, the use of an animal model appropriate to investigating mechanisms of injury in the FGR newborn is crucial for the development of effective and targeted therapies for babies. Piglets are ideal animals to explore how perinatal insults affect brain structure and function. FGR occurs spontaneously in the piglet, unlike other animal models that require surgical or chemical intervention, allowing brain outcomes to be studied without the confounding impacts of experimental interventions. The FGR piglet mimics many of the human pathophysiological outcomes associated with FGR including asymmetrical growth restriction with brain sparing. This review will discuss the similarities observed in brain outcomes between the FGR human and FGR piglet from a magnetic resonance imaging in the living and a histological perspective. FGR piglet studies provide the opportunity to determine and track mechanisms of brain injury in a clinically relevant animal model of FGR. Findings from these FGR piglet studies may provide critical information to rapidly translate neuroprotective interventions to clinic to improve outcomes for newborn babies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000523995 | DOI Listing |
Drug Deliv Transl Res
March 2025
Department of Chemical Engineering, University of Washington, Seattle, WA, USA.
Fetal growth restriction (FGR) affects 5% to 10% of all pregnancies in developed countries and is the second most leading cause of perinatal mortality and morbidity. Life-long consequences of FGR range from learning and behavioral issues to cerebral palsy. To support the newborn brain following FGR, timely and accessible neuroprotection strategies are needed.
View Article and Find Full Text PDFDev Neurosci
September 2022
UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
Fetal growth restriction (FGR) is associated with long-term neurodevelopmental disabilities including learning and behavioral disorders, autism, and cerebral palsy. Persistent changes in brain structure and function that are associated with developmental disabilities are demonstrated in FGR neonates. However, the mechanisms underlying these changes remain to be determined.
View Article and Find Full Text PDFMol Neurobiol
February 2022
UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
The developing brain is particularly vulnerable to foetal growth restriction (FGR) and abnormal neurodevelopment is common in the FGR infant ranging from behavioural and learning disorders to cerebral palsy. No treatment exists to protect the FGR newborn brain. Recent evidence suggests inflammation may play a key role in the mechanism responsible for the progression of brain impairment in the FGR newborn, including disruption to the neurovascular unit (NVU).
View Article and Find Full Text PDFNPJ Regen Med
November 2021
UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
The foetal brain is particularly vulnerable to the detrimental effects of foetal growth restriction (FGR) with subsequent abnormal neurodevelopment being common. There are no current treatments to protect the FGR newborn from lifelong neurological disorders. This study examines whether pure foetal mesenchymal stromal cells (MSC) and endothelial colony-forming cells (ECFC) from the human term placenta are neuroprotective through modulating neuroinflammation and supporting the brain vasculature.
View Article and Find Full Text PDFFront Immunol
April 2021
Section for Comparative Pediatrics and Nutrition, University of Copenhagen, Copenhagen, Denmark.
Infants born preterm or small for gestational age (SGA, due to fetal growth restriction) both show an increased risk of neonatal infection. However, it remains unclear how the co-occurrence of preterm birth and SGA may affect neonatal immunity and infection risk. We hypothesized that fetal growth restricted (FGR) preterm newborns possess impaired immune competence and increased susceptibility to systemic infection and sepsis, relative to corresponding normal birth weight (NBW) newborns.
View Article and Find Full Text PDF