Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In recent years, copper-based electrodes have attracted intense attention for the electrochemical reduction of nitrate (NO), the so-called ECRN. However, these electrodes suffer from low activity and selectivity. Herein, we report a novel Cu-based electrode (IE-Cu-400) for the ECRN fabricated by loading Cu-based nanoparticles onto graphite felt using in situ electrodeposition followed by annealing. Compared with traditional Cu-based electrodes, the IE-Cu-400 is comprised of smaller particles and the copper is present in a high oxidation state (Cu in CuO). During operation, the CuO is converted to Cu, which is the active ECRN species. In addition, an increased surface area and high density of grain boundaries resulting from the reduction of CuO were observed for IE-Cu-400. This resulted in a 3.38-fold increase in the NO removal rate and a 1.36-fold increase in NH selectivity. Further analyses revealed that the enhanced ECRN performance of IE-Cu-400 is linked to its increased number of active sites, as well as its improved adsorption and reduction ability for NO. Moreover, IE-Cu-400 displays high stability for the ECRN. Finally, the produced NH was effectively oxidised to N with approximately 100% selectivity via chlorination. Hence, the two-stage treatment strategy (i.e. ECRN by IE-Cu-400 + chlorination treatment) presented here shows great potential for the complete electrocatalytic denitrification of water. Further, this work highlights the beneficial effect of decreasing the particle size and controlling the surface oxidation of Cu-based catalysts simultaneously for enhancing the ECRN and offers new suggestions for the design of high-performance electrode materials for the ECRN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.154349 | DOI Listing |