Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bottom-up neuroscience, which consists of building and studying controlled networks of neurons , is a promising method to investigate information processing at the neuronal level. However, studies tend to use cells of animal origin rather than human neurons, leading to conclusions that might not be generalizable to humans and limiting the possibilities for relevant studies on neurological disorders. Here we present a method to build arrays of topologically controlled circuits of human induced pluripotent stem cell (iPSC)-derived neurons. The circuits consist of 4 to 50 neurons with well-defined connections, confined by microfabricated polydimethylsiloxane (PDMS) membranes. Such circuits were characterized using optical imaging and microelectrode arrays (MEAs), suggesting the formation of functional connections between the neurons of a circuit. Electrophysiology recordings were performed on circuits of human iPSC-derived neurons for at least 4.5 months. We believe that the capacity to build small and controlled circuits of human iPSC-derived neurons holds great promise to better understand the fundamental principles of information processing and storing in the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963377PMC
http://dx.doi.org/10.1039/d1lc01110cDOI Listing

Publication Analysis

Top Keywords

circuits human
16
ipsc-derived neurons
16
controlled circuits
12
human ipsc-derived
12
topologically controlled
8
neurons
8
electrophysiology recordings
8
circuits
6
human
5
ipsc-derived
4

Similar Publications

Developing Clinically Interpretable Neuroimaging Biotypes in Psychiatry.

Biol Psychiatry

September 2025

Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA. Electronic address: leawillia

Despite available treatments, major depressive disorder (MDD) remains one of the leading causes of disability across medical conditions. The current symptom-based diagnostic system groups patients with highly heterogeneous presentations, with no biomarkers to guide treatment-akin to diagnosing heart disease solely by chest pain, without imaging to reveal the underlying pathology. Lacking biological guidance, clinicians rely on trial-and-error prescribing.

View Article and Find Full Text PDF

Gut instincts: Gasdermin D feeds while it fights.

Immunity

September 2025

Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy. Electronic address:

The small intestine coordinates nutrient absorption and immune defense, but the epithelial signaling mechanisms bridging these functions are unclear. In this issue of Immunity, Yu et al. reveal a gasdermin-D-driven circuit that links lipid uptake and enterocyte metabolism to γδ T cell maintenance and barrier protection.

View Article and Find Full Text PDF

Engineering human neuronal diversity: Morphogens and stem cell technologies for neurodevelopmental biology.

Stem Cell Reports

September 2025

Child Study Center, Yale University, New Haven, CT 06520, USA; Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA. Electronic

A complex assortment of neuronal cells contributes to distinct functional circuits in the human brain. Such diversity is imposed upon pluripotent stem cells by a patterning process that begins much before the start of neurogenesis. Neural tube patterning relies on morphogens-diffusible signals that regulate transcription factor networks in progenitor cells, guiding spatial and temporal identity formation.

View Article and Find Full Text PDF

The emergence of electrical activity in human brain organoids.

Stem Cell Reports

September 2025

Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy. Electronic address:

Human brain organoids, generated from pluripotent stem cells, recapitulate fundamental features of human brain development, including neuronal diversity, regional architecture, and functional network activity. Integrated multimodal and transcriptomic analyses reveal a molecular repertoire of ionotropic receptors supporting action potentials, synaptic transmission, and oscillatory dynamics resembling early brain activity. This review synthesizes current knowledge on the molecular and electrophysiological determinants of neuronal maturation and network computations, from synaptic integration to large-scale dynamics.

View Article and Find Full Text PDF

Nowadays, the recovery of valuable metals from waste mobile phone printed circuit boards (WMPCBs) has attracted significant attention from researchers due to their economic potential. However, improper recycling poses serious risks to both human health and the environment. This study introduces, for the first time, a deep eutectic solvent (DES) as a novel, green, and highly selective carrier within an emulsion liquid membrane (ELM) system for the recovery of gold (Au) from WMPCBs.

View Article and Find Full Text PDF