Mechanisms Underlying Influence of Bioelectricity in Development.

Front Cell Dev Biol

Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States.

Published: February 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To execute the intricate process of development, cells coordinate across tissues and organs to determine where each cell divides and differentiates. This coordination requires complex communication between cells. Growing evidence suggests that bioelectrical signals controlled via ion channels contribute to cell communication during development. Ion channels collectively regulate the transmembrane potential of cells, and their function plays a conserved role in the development of organisms from flies to humans. Spontaneous calcium oscillations can be found in nearly every cell type and tissue, and disruption of these oscillations leads to defects in development. However, the mechanism by which bioelectricity regulates development is still unclear. Ion channels play essential roles in the processes of cell death, proliferation, migration, and in each of the major canonical developmental signaling pathways. Previous reviews focus on evidence for one potential mechanism by which bioelectricity affects morphogenesis, but there is evidence that supports multiple different mechanisms which are not mutually exclusive. Evidence supports bioelectricity contributing to development through multiple different mechanisms. Here, we review evidence for the importance of bioelectricity in morphogenesis and provide a comprehensive review of the evidence for several potential mechanisms by which ion channels may act in developmental processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883286PMC
http://dx.doi.org/10.3389/fcell.2022.772230DOI Listing

Publication Analysis

Top Keywords

ion channels
16
mechanism bioelectricity
8
evidence potential
8
bioelectricity morphogenesis
8
evidence supports
8
multiple mechanisms
8
review evidence
8
development
7
evidence
6
bioelectricity
5

Similar Publications

Energy deficiency selects crowded live epithelial cells for extrusion.

Nature

September 2025

The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London, UK.

Epithelial cells work collectively to provide a protective barrier, yet they turn over rapidly through cell division and death. If the numbers of dividing and dying cells do not match, the barrier can vanish, or tumours can form. Mechanical forces through the stretch-activated ion channel Piezo1 link both of the processes; stretch promotes cell division, whereas crowding triggers live cells to extrude and then die.

View Article and Find Full Text PDF

Temperature-sensitive Transient Receptor Potential (TRP) channels contribute to modulating skin vascular tone. Their role in Raynaud's Phenomenon (RP) remains unknown. We aimed to investigate TRPs expression in the skin, along with microvascular reactivity to cooling in patients with primary and secondary RP, compared with healthy subjects.

View Article and Find Full Text PDF

Mouse intestine as a useful model for CFTR electrophysiology function analysis.

Methods Cell Biol

September 2025

Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Italy; CEINGE-Biotecnologie Avanzate, Naples, Italy.

Cystic fibrosis (CF) is a genetic disorder primarily known for its severe impact on lung function, but it also significantly affects the digestive system, leading to complications such as intestinal blockages, malabsorption, inflammation, and microbial dysbiosis. The study of CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) effects on intestinal physiology is critical for developing new effective treatments. This work highlights the use of the mouse intestine as a valuable model for analyzing cellular electrophysiology and CFTR function.

View Article and Find Full Text PDF

Gut instincts: Gasdermin D feeds while it fights.

Immunity

September 2025

Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy. Electronic address:

The small intestine coordinates nutrient absorption and immune defense, but the epithelial signaling mechanisms bridging these functions are unclear. In this issue of Immunity, Yu et al. reveal a gasdermin-D-driven circuit that links lipid uptake and enterocyte metabolism to γδ T cell maintenance and barrier protection.

View Article and Find Full Text PDF

Near-surface reconstruction in cobalt-free spinel positive electrodes for high-performance lithium-ion batteries.

J Colloid Interface Sci

September 2025

National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China..

Spinel lithium manganate (LiMnO) is considered a highly promising cobalt-free cathode material for lithium-ion batteries (LIBs) owing to its three-dimensional Li-ion diffusion channels and the abundance of manganese. However, its practical applications are limited due to the substantial capacity deterioration induced by the Jahn-Teller effect and interfacial instability with the organic electrolyte. In this work, we propose a polyanion-based surface engineering strategy that enables simultaneous doping and the formation of a protective coating on the LiMnO cathode.

View Article and Find Full Text PDF