98%
921
2 minutes
20
. To provide a design analysis and guidance framework for the implementation of concurrent stimulation and sensing during adaptive deep brain stimulation (aDBS) with particular emphasis on artifact mitigations.. We defined a general architecture of feedback-enabled devices, identified key components in the signal chain which might result in unwanted artifacts and proposed methods that might ultimately enable improved aDBS therapies. We gathered data from research subjects chronically-implanted with an investigational aDBS system, Summit RC + S, to characterize and explore artifact mitigations arising from concurrent stimulation and sensing. We then used a prototype investigational implantable device, DyNeuMo, and a bench-setup that accounts for tissue-electrode properties, to confirm our observations and verify mitigations. The strategies to reduce transient stimulation artifacts and improve performance during aDBS were confirmed in a chronic implant using updated configuration settings.We derived and validated a 'checklist' of configuration settings to improve system performance and areas for future device improvement. Key considerations for the configuration include (a) active instead of passive recharge, (b) sense-channel blanking in the amplifier, (c) high-pass filter settings, (d) tissue-electrode impedance mismatch management, (e) time-frequency trade-offs in the classifier, (f) algorithm blanking and transition rate limits. Without proper channel configuration, the aDBS algorithm was susceptible to limit-cycles of oscillating stimulation independent of physiological state. By applying the checklist, we could optimize each block's performance characteristics within the overall system. With system-level optimization, a 'fast' aDBS prototype algorithm was demonstrated to be feasible without reentrant loops, and with noise performance suitable for subcortical brain circuits.. We present a framework to study sources and propose mitigations of artifacts in devices that provide chronic aDBS. This work highlights the trade-offs in performance as novel sensing devices translate to the clinic. Finding the appropriate balance of constraints is imperative for successful translation of aDBS therapies.Institutional Review Board and Investigational Device Exemption numbers: NCT02649166/IRB201501021 (University of Florida), NCT04043403/IRB52548 (Stanford University), NCT03582891/IRB1824454 (University of California San Francisco). IDE #180 097.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095704 | PMC |
http://dx.doi.org/10.1088/1741-2552/ac59a3 | DOI Listing |
Zhonghua Jie He He Hu Xi Za Zhi
September 2025
Neuromuscular diseases are often accompanied by various types of sleep-related breathing disorders, which can exacerbate the underlying condition and are associated with a poor prognosis. Early identification is essential, and interventions such as non-invasive ventilation, oxygen therapy, and respiratory rehabilitation should be initiated promptly to mitigate disease progression and improve outcomes. Nevertheless, the rates of missed and misdiagnosed cases remain common in clinical practice.
View Article and Find Full Text PDFNat Methods
September 2025
Department of Radiology, Michigan State University, East Lansing, MI, USA.
Concurrent recording of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) signals reveals cross-scale neurovascular dynamics crucial for explaining fundamental linkages between function and behaviors. However, MRI scanners generate artifacts for EEG detection. Despite existing denoising methods, cabled connections to EEG receivers are susceptible to environmental fluctuations inside MRI scanners, creating baseline drifts that complicate EEG signal retrieval from the noisy background.
View Article and Find Full Text PDFNeuroimage Rep
September 2025
School of Psychology, Faculty of Medicine and Health, University of Leeds, LS2 9JT, UK.
Background: Theta Burst Stimulation (TBS) is a form of non-invasive brain stimulation that can induce neuroplastic changes in the underlying intracortical areas. It has significant potential in clinical and research settings for modulating cognitive and motor performance. Little is known about how TBS affects oxygenations levels within and across brain hemispheres during stimulation of the Dorsolateral Prefrontal Cortex (DLPFC).
View Article and Find Full Text PDFInjections have been linked to feline sarcomas (feline injection-site sarcoma; FISS) and cutaneous lymphomas (cutaneous lymphoma at injection site; CLIS). Both tumors often exhibit lymphoplasmacytic inflammation ascribed to injected immunogenic material. CLIS is hypothesized to emerge from transformation and clonal expansion of lymphoid cells following persistent immune stimulation with feline leukemia virus (FeLV) reactivation and transformation.
View Article and Find Full Text PDFJ Adv Res
September 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical Univ
Introduction: Aberrant biomechanical force-induced chondrocyte adipogenesis is involved in the development of temporomandibular joint osteoarthritis (TMJ OA). Growth differentiation factor 11 (GDF11) has been implicated in this process. However, whether mechanosensitive histone deacetylase 3 (HDAC3) regulates GDF11 signaling in the context of TMJ OA remains to be elucidated.
View Article and Find Full Text PDF