98%
921
2 minutes
20
A loss of the checkpoint kinase ataxia telangiectasia mutated (ATM) leads to impairments in the DNA damage response, and in humans causes cerebellar neurodegeneration, and an increased risk of cancer. A loss of ATM is also associated with increased protein aggregation. The relevance and characteristics of this aggregation are still incompletely understood. Moreover, it is unclear to what extent other genotoxic conditions can trigger protein aggregation as well. Here, we show that targeting ATM, but also ATR or DNA topoisomerases, results in the widespread aggregation of a metastable, disease-associated subfraction of the proteome. Aggregation-prone model substrates, including Huntingtin exon 1 containing an expanded polyglutamine repeat, aggregate faster under these conditions. This increased aggregation results from an overload of chaperone systems, which lowers the cell-intrinsic threshold for proteins to aggregate. In line with this, we find that inhibition of the HSP70 chaperone system further exacerbates the increased protein aggregation. Moreover, we identify the molecular chaperone HSPB5 as a cell-specific suppressor of it. Our findings reveal that various genotoxic conditions trigger widespread protein aggregation in a manner that is highly reminiscent of the aggregation occurring in situations of proteotoxic stress and in proteinopathies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871389 | PMC |
http://dx.doi.org/10.7554/eLife.70726 | DOI Listing |
J Neural Transm (Vienna)
September 2025
Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40139, Italy.
Multisystem proteinopathy 1 (MSP1) is a rare autosomal dominant disorder caused by mutations in the valosin-containing protein (VCP) gene typically presenting with inclusion body myopathy (IBM), Paget's disease of bone (PDB), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). Parkinsonism is a rare feature of MSP1, occurring in 3-4% of cases, with limited post-mortem evidence suggesting neuronal synucleinopathy. We report a case of VCP-related parkinsonism providing the first in vivo demonstration of phosphorylated alpha-synuclein deposition in skin biopsy, a highly sensitive and specific in vivo biomarker of synucleinopathy.
View Article and Find Full Text PDFNature
September 2025
Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Amino acids (AAs) have a long history of being used as stabilizers for biological media. For example, they are important components in biomedical formulations. The effect of AAs on biological systems is also starting to be appreciated.
View Article and Find Full Text PDFTrends Biochem Sci
September 2025
Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA. Electronic address:
Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene, resulting in an expanded polyglutamine (polyQ) tract in HTT protein. Expanded polyQ tracts cause mutant HTT (mHTT) to aggregate and accumulate as cellular inclusions. Recent studies highlight the interactions between mHTT and different cellular membranes that contribute to HD pathogenesis.
View Article and Find Full Text PDFClin Investig Arterioscler
September 2025
Cardiovascular Biochemistry, IR SANT PAU, Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain. Electronic address:
Background: Electronegative LDL (LDL(-)) is a circulant modified LDL with inflammatory properties whose proportion raises in ischemic events. The soluble form of LDL receptor related protein 1 (sLRP1) increases in blood in pathological situations, including ischemic stroke. We aimed to evaluate the effect of LDL(-) on sLRP1 release from monocytes and macrophages.
View Article and Find Full Text PDFMethods Cell Biol
September 2025
Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece. Electronic address:
Mitochondrial dysfunction is a shared hallmark of neurodegenerative disorders, including Alzheimer's disease (AD) and tauopathies among others. Pathological alterations of the microtubule-associated protein Tau can disrupt mitochondrial dynamics, transport, and function, ultimately leading to neuronal toxicity and synaptic deficits. Understanding these processes is crucial for developing therapeutic interventions.
View Article and Find Full Text PDF