Satellite observations document trends consistent with a boreal forest biome shift.

Glob Chang Biol

School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, USA.

Published: May 2022


Article Synopsis

  • The boreal forest biome is expected to shift northward due to climate change, with noticeable changes in vegetation productivity and greenness occurring first at its climatic edges.
  • Research utilized four decades of satellite data to assess these changes, revealing that vegetation greenness increased at more sites than it decreased from 1985 to 2019, particularly in cooler areas with certain soil conditions.
  • Conversely, browning of vegetation was more prevalent in the warmest parts of the boreal forest, indicating shifts in ecological dynamics as climate conditions become warmer and drier, suggesting early signs of a biome shift.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The boreal forest biome is a major component of Earth's biosphere and climate system that is projected to shift northward due to continued climate change over the coming century. Indicators of a biome shift will likely first be evident along the climatic margins of the boreal forest and include changes in vegetation productivity, mortality, and recruitment, as well as overall vegetation greenness. However, the extent to which a biome shift is already underway remains unclear because of the local nature of most field studies, sparsity of systematic ground-based ecological monitoring, and reliance on coarse resolution satellite observations. Here, we evaluated early indicators of a boreal forest biome shift using four decades of moderate resolution (30 m) satellite observations and biogeoclimatic spatial datasets. Specifically, we quantified interannual trends in annual maximum vegetation greenness using an ensemble of vegetation indices derived from Landsat observations at 100,000 sample sites in areas without signs of recent disturbance. We found vegetation greenness increased (greened) at 38 [29, 42] % and 22 [15, 26] % of sample sites from 1985 to 2019 and 2000 to 2019, whereas vegetation greenness decreased (browned) at 13 [9, 15] % and 15 [13, 19] % of sample sites during these respective periods [95% Monte Carlo confidence intervals]. Greening was thus 3.0 [2.6, 3.5] and 1.5 [0.8, 2.0] times more common than browning and primarily occurred in cold sparsely treed areas with high soil nitrogen and moderate summer warming. Conversely, browning primarily occurred in the climatically warmest margins of both the boreal forest biome and major forest types (e.g., evergreen conifer forests), especially in densely treed areas where summers became warmer and drier. These macroecological trends reflect underlying shifts in vegetation productivity, mortality, and recruitment that are consistent with early stages of a boreal biome shift.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303657PMC
http://dx.doi.org/10.1111/gcb.16121DOI Listing

Publication Analysis

Top Keywords

boreal forest
20
biome shift
20
forest biome
16
vegetation greenness
16
satellite observations
12
biome major
8
margins boreal
8
vegetation productivity
8
productivity mortality
8
mortality recruitment
8

Similar Publications

Seasonal quantification of aquatic macrophytes in small boreal lakes with multiscale remote sensing.

Sci Total Environ

September 2025

Environmental Change Research Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014, Finland.

Small lakes are common across the Boreal-Arctic zone. Due to shallowness and high shoreline-surface area ratios, they are abundant in aquatic macrophytes. Vegetated littoral zones have been suggested to count as wetlands when quantifying carbon sinks and sources, but the actual magnitude of aquatic vegetation is seldom quantified.

View Article and Find Full Text PDF

A practical guide to long-term field PAM chlorophyll fluorescence measurements: setup, installation, data processing with R package 'LongTermPAM' and interpretation.

Photosynth Res

September 2025

Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, 00014, Finland.

Pulse-amplitude modulated (PAM) chlorophyll fluorescence (ChlF) measurements provide a non-invasive method to study the regulation of the light reactions of photosynthesis in situ. PAM ChlF contributes also to the advancement of the interpretation of long-term observations of remotely sensed solar induced fluorescence by revealing the mechanistic connection between ChlF and photosynthetic function. However, long-term field PAM ChlF measurements remain uncommon due to challenges associated with the outdoor environment, instrument installation and maintenance, or data processing and interpretation.

View Article and Find Full Text PDF

The impacts of drying on bryospheric photosynthesis are poorly understood. Utilising a 20-yr-long experiment, we quantified the effects of long-term water level drawdown (WLD) on links between bryospheric photosynthesis, microbial community composition, decomposition, and environmental variables. The community structure of photoautotrophic microbes was investigated using metabarcoding and quantitative polymerase chain reaction.

View Article and Find Full Text PDF

Effect of nitrogen and phosphorus addition on plant community in a typical peatland of the Greater Khingan Mountains, China.

Ying Yong Sheng Tai Xue Bao

August 2025

Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China.

To analyze the impacts of increased nutrient availability on plant community structure, we conducted a long-term field N and P addition experiment in a typical peatland in the north of Greater Khingan Mountain and investigated species dominance, community diversity, and aboveground biomass after four, six, and eight years of N (6 g N·m·a) and P (2 g P·m·a) addition. The results showed that P addition did not affect the dominances of deciduous shrub, evergreen shrub, sedge, grass, forb, moss, and lichen. However, N addition significantly increased the importance values and dominances of deciduous shrub and grass but reduced the importance values and dominances of moss and lichen.

View Article and Find Full Text PDF