Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Radiopharmaceutical therapy (RPT) is an attractive strategy for treatment of disseminated cancers including those overexpressing the HER2 receptor including breast, ovarian and gastroesophageal carcinomas. Single-domain antibody fragments (sdAbs) exemplified by the HER2-targeted VHH_1028 evaluated herein are attractive for RPT because they rapidly accumulate in tumor and clear faster from normal tissues than intact antibodies. In this study, VHH_1028 was labeled using the residualizing prosthetic agent N-succinimidyl 3-guanidinomethyl 5-[I]iodobenzoate (iso-[I]SGMIB) and its tissue distribution evaluated in the HER2-expressing SKOV-3 ovarian and BT474 breast carcinoma xenograft models. In head-to-head comparisons to [I]SGMIB-2Rs15d, a HER2-targeted radiopharmaceutical currently under clinical investigation, iso-[I]SGMIB-VHH_1028 exhibited significantly higher tumor uptake and significantly lower kidney accumulation. The results demonstrated 2.9 and 6.3 times more favorable tumor-to-kidney radiation dose ratios in the SKOV-3 and BT474 xenograft models, respectively. Iso-[I]SGMIB-VHH_1028 was prepared using a solid-phase extraction method for purification of the prosthetic agent intermediate Boc-iso-[I]SGMIB that reproducibly scaled to therapeutic-level doses and obviated the need for its HPLC purification. Single-dose (SKOV-3) and multiple-dose (BT474) treatment regimens demonstrated that iso-[I]SGMIB-VHH_1028 was well tolerated and provided significant tumor growth delay and survival prolongation. This study suggests that iso-[I]SGMIB-VHH_1028 is a promising candidate for RPT of HER2-expressing cancers and further development is warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864007PMC
http://dx.doi.org/10.1038/s41598-022-07006-9DOI Listing

Publication Analysis

Top Keywords

radiopharmaceutical therapy
8
her2-expressing cancers
8
prosthetic agent
8
xenograft models
8
evaluation i-labeled
4
i-labeled her2-specific
4
her2-specific single
4
single domain
4
domain antibody
4
antibody fragment
4

Similar Publications

Ferroptosis-Enhanced Radiopharmaceutical Therapy via a Manganese-Based Nanoplatform.

Mol Pharm

September 2025

Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.

Radiopharmaceutical therapy (RPT) is a therapeutic strategy that delivers radionuclides in a targeted manner to achieve precise radiation-induced killing of tumor cells. While RPT primarily induces tumor cell death through apoptosis, resistance to apoptosis has been identified as a key mechanism underlying the radioresistance. Therefore, integrating nonapoptotic cell death pathways with RPT offers a promising strategy to enhance its therapeutic efficacy.

View Article and Find Full Text PDF

The molecular blueprint of targeted radionuclide therapy.

Nat Rev Clin Oncol

September 2025

German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany.

Targeted radionuclide therapy (TRT) is a cutting-edge treatment approach in oncology that combines the molecular precision of targeted agents with the effect of radiotherapy to selectively deliver cytotoxic radiation to cancer cells. Research efforts from the past few decades have led to a diverse molecular landscape of TRT and have provided lessons for further rational development of targeted radiopharmaceuticals and expansion of the clinical applications of this treatment modality. In this Review, we discuss TRT in the context of therapeutic approaches currently available in oncology, describe the broad range of established and emerging targets for TRT including innovative approaches to exploit vulnerabilities presented by the tumour microenvironment, and address the challenges for clinical translation and molecular optimization.

View Article and Find Full Text PDF

Radiopharmaceutical services are key in cancer screening, diagnosis, staging, treatment monitoring, detection of remission, and therapy. Unfortunately, due to the high costs of these services, their availability is very limited in developing countries. This study highlights issues related to access to radiopharmaceuticals and imaging equipment in English-speaking African countries.

View Article and Find Full Text PDF

Aims: This review summarizes the role and future prospects of nuclear medicine in ovarian cancer, focusing on novel radiopharmaceuticals beyond FDG for diagnostic, predictive, and therapeutic applications within a theranostic framework.

Materials And Methods: A narrative literature review was conducted using major databases. Peer-reviewed articles addressing non-FDG radiopharmaceuticals in ovarian cancer were identified and assessed; FDG-based studies were excluded due to the availability of prior comprehensive reviews.

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma (DLBCL) requires accurate therapeutic response assessment. This study evaluates the efficacy and prognostic value of [18F] fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET-CT) using the Deauville 5-point scale and maximum standardized uptake value (ΔSUVmax) methods in DLBCL patients. A retrospective study was conducted from January 2021 to December 2022, including 60 DLBCL patients.

View Article and Find Full Text PDF