Synchronization of relaxation oscillators with adaptive thresholds and application to automated guided vehicles.

Phys Rev E

Data Science Research Laboratories, NEC Corporation, 1753 Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666, Japan.

Published: January 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The present paper proposes an adaptive control law for inducing in-phase and antiphase synchronization in a pair of relaxation oscillators. We analytically show that the phase dynamics of the oscillators coupled by the control law is equivalent to that of Kuramoto phase oscillators and then extend the results for a pair of oscillators to three or more oscillators. We also provide a systematic procedure for designing the controller parameters for oscillator networks with all-to-all and ring topologies. Our numerical simulations demonstrate that these analytical results can be used to solve a dispatching problem encountered by automated guided vehicles (AGVs) in factories. AGV congestion can be avoided and the peak value of the amount of materials or parts in buffers can be suppressed.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.105.014201DOI Listing

Publication Analysis

Top Keywords

relaxation oscillators
8
automated guided
8
guided vehicles
8
control law
8
oscillators
6
synchronization relaxation
4
oscillators adaptive
4
adaptive thresholds
4
thresholds application
4
application automated
4

Similar Publications

We introduce an efficient method, TTN-HEOM, for exactly calculating the open quantum dynamics for driven quantum systems interacting with highly structured bosonic baths by combining the tree tensor network (TTN) decomposition scheme with the bexcitonic generalization of the numerically exact hierarchical equations of motion (HEOM). The method yields a series of quantum master equations for all core tensors in the TTN that efficiently and accurately capture the open quantum dynamics for non-Markovian environments to all orders in the system-bath interaction. These master equations are constructed based on the time-dependent Dirac-Frenkel variational principle, which isolates the optimal dynamics for the core tensors given the TTN ansatz.

View Article and Find Full Text PDF

Ionization of alkanes to form radical cations activates their otherwise unreactive C-H bonds, facilitating important chemical processes such as hydrocarbon cracking. This work investigates the radical cation dissociation dynamics of hexane (CH) structural isomers by using femtosecond time-resolved mass spectrometry and quantum chemical calculations. All five isomers exhibit competition between the yields of fragment ions arising from direct C-C bond cleavage or dissociative rearrangement with hydrogen migration on dynamical time scales of ∼50-300 fs, suggesting that hydrogen migration in the metastable cations operates on such short time scales.

View Article and Find Full Text PDF

Multi-compartment diffusion-relaxation MR signal representation in the spherical 3D-SHORE basis.

Comput Biol Med

September 2025

Laboratorio de Procesado de Imagen (LPI), ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain. Electronic address:

Modelling the diffusion-relaxation magnetic resonance (MR) signal obtained from multi-parametric sequences has recently gained immense interest in the community due to new techniques significantly reducing data acquisition time. A preferred approach for examining the diffusion-relaxation MR data is to follow the continuum modelling principle that employs kernels to represent the tissue features, such as the relaxations or diffusion properties. However, constructing reasonable dictionaries with predefined signal components depends on the sampling density of model parameter space, thus leading to a geometrical increase in the number of atoms per extra tissue parameter considered in the model.

View Article and Find Full Text PDF

Optimal algorithms for controlling infectious diseases in real time using noisy infection data.

PLoS Comput Biol

September 2025

Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom.

Deciding when to enforce or relax non-pharmaceutical interventions (NPIs) based on real-time outbreak surveillance data is a central challenge in infectious disease epidemiology. Reporting delays and infection under-ascertainment, which characterise practical surveillance data, can misinform decision-making, prompting mistimed NPIs that fail to control spread or permitting deleterious epidemic peaks that overload healthcare capacities. To mitigate these risks, recent studies propose more data-insensitive strategies that trigger NPIs at predetermined times or infection thresholds.

View Article and Find Full Text PDF

Encapsulation Enhances the Quantum Coherence of a Solid-State Molecular Spin Qubit.

Angew Chem Int Ed Engl

September 2025

Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, Barcelona, 08028, Spain.

Spins within molecules benefit from the atomistic control of synthetic chemistry for the realization of qubits. One advantage is that the quantum superpositions of the spin states encoding the qubit can be coherently manipulated using electromagnetic radiation. The main challenge is the fragility of these superpositions when qubits are to partake of solid-state devices.

View Article and Find Full Text PDF