Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Insulin receptors are distributed in the whole brain, including different parts of the reward circuit that modulate dopamine as the primary neurotransmitter implicated in addiction. The goal of the current study was to illuminate the role of insulin in the extinction period and reinstatement of morphine-induced conditioned place preference (CPP) in the naïve and diabetic rats. One hundred and twelve male rats were randomly divided into two naïve and diabetic groups. Diabetes was induced by one dose administration of streptozotocin (STZ; 60 mg/kg; IP) ten days before the conditioning procedure. To evaluate the insulin's role in the duration of extinction period of morphine-CPP, naïve and diabetic rats received insulin (10 U/kg; IP) before each morphine injection (5 mg/kg; sc) during the 3-day conditioning phase. All rats that passed the conditioning phase and then underwent the extinction period. Morphine priming-induced reinstatement was determined in both naïve and diabetic rats by injection of different ineffective doses of morphine (0.5 and 1 mg/kg; sc) in extinguished rats. In the following experiments, three groups of diabetic rats received insulin during the conditioning, expression, or reinstatement phase to illustrate insulin's effect on the morphine-induced reinstatement and the duration of the extinction period (insulin was only treated during the acquisition phase). The results showed that the extinction period and reinstatement of morphine were potentiated in the STZ-induced diabetic rats. The obtained findings also revealed that insulin replacement shortened the extinction period of morphine-induced CPP in STZ-diabetic rats. However, insulin replacements in conditioning, expression, and reinstatement phases did not affect morphine priming-induced reinstatement in diabetic animals.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-022-03550-yDOI Listing

Publication Analysis

Top Keywords

diabetic rats
24
extinction period
24
naïve diabetic
16
rats
10
insulin
8
role insulin
8
insulin extinction
8
reinstatement
8
reinstatement morphine-induced
8
morphine-induced conditioned
8

Similar Publications

Diabetic cardiomyopathy (DCM) is a progressive heart disorder associated with diabetes mellitus, leading to structural and functional cardiac abnormalities. The mechanisms responsible include renin-angiotensin-aldosterone (RAAS) activation, inflammation, apoptosis, and metabolic disturbances. Despite well-established epidemiological links, treatments for DCM are elusive.

View Article and Find Full Text PDF

Intracellular trafficking of secretory and membrane proteins from the endoplasmic reticulum (ER) to the cell surface, via the secretory pathway, is crucial to the differentiated function of epithelial tissues. In the thyroid gland, a prerequisite for such trafficking is proper protein folding in the ER, assisted by an array of ER molecular chaperones. One of the most abundant of these chaperones, Glucose-Regulated-Protein-170 (GRP170, encoded by Hyou1), is a noncanonical hsp70-like family member.

View Article and Find Full Text PDF

Exploring the hypoglycemic potential of HuGLP-1-loaded bilosomes in controlling type 2 diabetes mellitus.

Ther Deliv

September 2025

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, India.

Background: Type 2 diabetes mellitus (T2DM) is the most devastating disease and it necessitates therapeutic intervention for its effective management. Human Glucagon-like peptide-1 (HuGLP-1) is the potential candidate in the treatment of T2DM; however, it limits its utilization owing to its solubility and stability issues.

Aims: The current investigation aims to develop HuGLP-1-loaded bilosomes as a novel strategy for managing T2DM.

View Article and Find Full Text PDF

Purpose: The present study aimed to fabricate microneedles (MNs) for transdermal delivery of insulin. Chitosan-conjugated carboxy phenyl boronic acid polymer was synthesized and characterized to load insulin in the form of nanoparticles.

Methods: Optimized insulin nanoparticles (ILN-NPs) were loaded into MN arrays by micromolding, and the resulting MN patches were characterized by scanning electron microscopy (SEM) and mechanical failure tests.

View Article and Find Full Text PDF

One of the most prevalent metabolic diseases in recent years, type 2 diabetes is now one of the top causes of death globally and a significant risk factor for cardiovascular diseases. Therefore, the goal of this study is to investigate the impact of HIIT exercises on the levels of specific proteins associated with mitochondrial biogenesis and apoptosis in the heart tissue of male Wistar rats with type 2 diabetes. Animals in diabetic groups were given a high-fat diet and an intraperitoneal injection of STZ to cause diabetes.

View Article and Find Full Text PDF