98%
921
2 minutes
20
Purpose: The viscosity of highly concentrated therapeutic monoclonal antibody (mAb) formulations at concentrations ≥ 100 mg/mL can significantly affect the stability, processing, and drug product development for subcutaneous delivery. An early identification of a viscosity prone mAb during candidate selection stages are often beneficial for downstream processes. Higher order structure of mAbs may often dictate their viscosity behavior at high concentration. Thus it is beneficial to gauge or rank-order their viscosity behavior using noninvasive structural fingerprinting methods and to potentially screen for suitable viscosity lowering excipients.
Methods: In this study, Dynamic Light Scattering (DLS) and 2D NMR based methyl fingerprinting were used to correlate viscosity behavior of a set of Pfizer mAbs. The viscosities of mAbs were determined. Respective Fab and Fc domains were generated for studies.
Result: Methyl fingerprinting of intact mAbs allows for differentiation of viscosity prone mAbs from well behaved ones even at 30-40 mg/ml, where bulk viscosity of the solutions are near identical. For viscosity prone mAbs, peak broadening and or distinct chemical shift changes were noted in intact and fragment fingerprints, unlike the well-behaved mAbs, indicative of protein protein interactions (PPI).
Conclusion: Fab-Fab or Fab-Fc interactions may lead to formation of protein networks at high concentration. The early transients to these network formation may be manifested through peak broadening or peak shift in the 2D NMR spectrum of mAb/mAb fragments. Such insights go beyond rank ordering mAbs based on viscosity behavior, which can be obtained by other methods as well..
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043092 | PMC |
http://dx.doi.org/10.1007/s11095-022-03200-6 | DOI Listing |
Nanoscale
September 2025
Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342030, India.
Understanding ion transport mechanisms in sodium ion-based polymer electrolytes is critical, considering the emergence of sodium ion electrolyte technologies as sustainable alternatives to lithium-based systems. In this paper, we employ all-atom molecular dynamics simulations to investigate the salt concentration () effects on ionic conductivity () mechanisms in sodium hexafluorophosphate (NaPF) in polyethylene oxide (PEO) electrolytes. Sodium ions exhibit ion solvation shell characteristics comparable to those of lithium-based polymer electrolytes, with similar anion coordination but more populated oxygen coordination in the polymer matrix.
View Article and Find Full Text PDFJ Sci Food Agric
September 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
Background: Understanding starch behavior under various processing conditions is important for the development of novel food products with tailored nutritional profiles. This study investigated changes to the structure and properties of native corn starch (NCS) and biomimetic starch-entrapped microspheres following thermal and enzymatic treatments.
Results: Heat-treated microspheres showed more birefringence and structural order than native starch, indicating incomplete gelatinization due to the alginate matrix.
Food Res Int
November 2025
College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China. Electronic address:
The formation and recrystallization of ice crystals during freezing causes irreversible structural damage to the dough matrix, which is characterized by the cold denaturation of the gluten protein structure and the degradation of the gluten network structure. Polysaccharides are widely used to improve the quality of frozen dough owing to their excellent water-holding and viscosity. Current research has shown that polysaccharides mitigate the physical damage of ice crystals on the gluten protein structure mainly by modifying the water status of frozen dough to inhibit the ice crystallization process.
View Article and Find Full Text PDFFood Sci Biotechnol
October 2025
Department of Biosystems Engineering, Seoul National University, Seoul, 08826 Republic of Korea.
Unlabelled: This study was performed to evaluate the effects of added ingredients such as modified starch (MS), xanthan gum (XG), sugar, (SU), salt (SA), and vinegar (VIN) on the water mobility and physicochemical properties of model tomato ketchup and to investigate the correlation between the obtained variables and serum separation. The type and concentration of ingredients added to the tomato paste (TP) had significant effects on experimental variables, including the serum separation rate, water mobility, and viscosity. Serum separation was most severe in SU and VIN- added samples and minimal in MS and XG- added samples.
View Article and Find Full Text PDFACS Omega
September 2025
Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul, PO Box 549, 79070-900 Campo Grande, MS, Brazil.
The production of diesel-biodiesel blends (DBB) aims to mitigate the environmental impacts of diesel combustion. However, gaps remain in understanding their molecular properties, particularly fluorescence anisotropy (FA), which reflects molecular rotation and environmental constraints (e.g.
View Article and Find Full Text PDF