Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: The aim of this study was to determine whether the choice of scleral indentation technique during primary rhegmatogenous retinal detachment surgery has an influence on the risk of re-detachment.

Methods: We included retrospectively 154 eyes with a primary rhegmatogenous retinal detachment treated in the Eye Clinic Sulzbach/Saar Germany, who were operated on by two experienced surgeons using the same basic surgical setup. Surgeon A performed an external 360° indentation, shaved the vitreous base using the light pipe cap, and used the operating microscope (opm) for direct visualization. Surgeon B performed an external 360° indentation, shaved the vitreous base using a simple indentor, and used an endoillumination (light pipe) with the opm and a handheld widefield lens for direct visualization.

Results: Comparing both indentation procedures, 15.66% (13/83) of patients operated on by surgeon A and 9.86% (7/71) of patients operated on by surgeon B had a retinal re-detachment within a follow-up period of 6 months (adj. p = 0.64, two-proportion Z-test).

Conclusion: The rate of retinal re-detachment could be influenced by the indentation technique at the end of surgery favoring external indentation and internal visualization with an endoilluminator (chandelier light). We attribute this to the better visualization of the vitreous base facilitated by endoillumination. However, many variables play a role in the development of retinal re-detachment, requiring further studies with a larger number of patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8845228PMC
http://dx.doi.org/10.1186/s40942-022-00362-8DOI Listing

Publication Analysis

Top Keywords

indentation technique
12
retinal detachment
12
vitreous base
12
retinal re-detachment
12
scleral indentation
8
rate retinal
8
detachment surgery
8
primary rhegmatogenous
8
rhegmatogenous retinal
8
surgeon performed
8

Similar Publications

Background: Shield-triggered autoinjectors (AIs) aim to reduce needle phobia and accidental needlestick injuries and improve usability. However, they may cause deeper injections due to tissue compression. This study investigates the mechanical response of AI application into abdominal tissue in-vivo.

View Article and Find Full Text PDF

Hyperelastic characterization deep indentation.

Soft Matter

September 2025

Mechanical Engineering Department, Institute of Applied Mathematics School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

Hyperelastic material characterization is crucial for sensing and understanding the behavior of soft materials-such as tissues, rubbers, hydrogels, and polymers-under quasi-static loading before failure. Traditional methods typically rely on uniaxial tensile tests, which require the cumbersome preparation of dumbbell-shaped samples for clamping in a uniaxial testing machine. In contrast, indentation-based methods, which are non-destructive and can be conducted without sample preparation, remain underexplored.

View Article and Find Full Text PDF

Diamond-like carbon (DLC) is famous for its extraordinary mechanical properties in tribology applications. Despite the growing interest and achievements in exploiting more advanced DLC, unveiling the deformation mechanisms, especially in the plastic regime, remains a great challenge. Here, molecular dynamics (MD) simulation, as an computational microscopy technique, was employed to probe the atomically structural and mechanical responses in DLC with a certain density to nanoindentation.

View Article and Find Full Text PDF

In this work, SiCN thin films were deposited on p-Si (100) substrate using a thermal Chemical Vapor Deposition (CVD) process. The mechanical behavior of the thin film was characterized using the nanoindentation technique, where the load was varied from 1 to 4 mN, to understand the influence of load variation on the load-displacement response. Additionally, an experimentally validated FE model, incorporating an elast-plastic material response of the thin film, was developed to understand localized stress distribution and fracture behavior.

View Article and Find Full Text PDF

In this study we report on the structural, mechanical, and electrical characterization of different structures of vertically aligned zinc oxide (ZnO) nanowires (NWs) synthesized using hydrothermal methods. By optimizing the growth conditions, scanning electron microscopy (SEM) micrographs show that the ZnO NWs could reach an astounding 51.9 ± 0.

View Article and Find Full Text PDF