98%
921
2 minutes
20
The application of periodontal tissue in regenerative medicine has gained increasing interest since it has a high potential to induce hard-tissue regeneration, and is easy to handle and graft to other areas of the oral cavity or tissues. Additionally, bone morphogenetic protein-2 (BMP-2) has a high potential to induce the differentiation of mesenchymal stem cells into osteogenic cells. We previously developed a system for a gene transfer to the periodontal tissues in animal models. In this study, we aimed to reveal the potential and efficiency of periodontal tissue as a biomaterial for hard-tissue regeneration following a gene transfer. A non-viral expression vector carrying was injected into the palate of the periodontal tissues of Wistar rats, followed by electroporation. The periodontal tissues were analyzed through bone morphometric analyses, including mineral apposition rate (MAR) determination and collagen micro-arrangement, which is a bone quality parameter, before and after a gene transfer. The MAR was significantly higher 3-6 d after the gene transfer than that before the gene transfer. Collagen orientation was normally maintained even after the gene transfer, suggesting that the gene transfer has no adverse effects on bone quality. Our results suggest that periodontal tissue electroporated with could be a novel biomaterial candidate for hard-tissue regeneration therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840059 | PMC |
http://dx.doi.org/10.3390/ma15030993 | DOI Listing |
Emerg Microbes Infect
September 2025
Infectious Diseases Translational Research Programme, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
Hypervirulent (hvKp) and classical multidrug-resistant (MDR) strains belong to distinct lineages and hvKp are typically characterized by hypermucoid capsules that have been shown to limit horizontal gene transfer (HGT), including plasmid acquisition. However, the convergence of hypervirulence and MDR is increasingly common worldwide. When we profiled 127 antibiotic-susceptible hvKp strains, we found that most (86%) are highly permissive to plasmid transfer despite their capsules.
View Article and Find Full Text PDFInfect Disord Drug Targets
September 2025
Department of Microbiology, AIIMS, Jodhpur, India.
Introduction: Typhoid fever, caused by Salmonella Typhi and Paratyphi, remains a sig-nificant public health concern, particularly in developing countries. The emergence of antimicrobial resistance, including resistance to first-line drugs, fluoroquinolones, and the development of re-sistance to ceftriaxone, poses a significant threat to effective treatment.
Methods: This study investigated extended-spectrum β-lactamase (ESBL)-producing Salmonella Typhi isolates from blood samples of patients with suspected typhoid fever at a tertiary care hospital in Western Rajasthan, India, between April 2022 and May 2024.
Curr Gene Ther
September 2025
Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
Gene therapy has revolutionized the therapeutic landscape for hemophilia A and B, offering the prospect for persistent endogenous production of coagulation factors VIII and IX. Recent advances in adeno-associated virus (AAV)-mediated gene transfer, particularly the approvals of valoctocogene roxaparvovec (Roctavian) and etranacogene dezaparvovec (Hemgenix), mark significant milestones in hemophilia care. This mini-review synthesizes emerging clinical data from phase I-III trials published between 2022 and 2025, emphasizing efficacy, durability, and immunogenicity profiles of leading AAV-based therapies.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
School of Environment and Geography, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China. Electronic address:
In this study, Fe-Ni-layered double hydroxide modified crayfish shell biochar substrate (Fe-Ni-LDH@CSBC) was successfully prepared and introduced into constructed wetland (CW) to research the Cr(VI) removal mechanism through substrate adsorption and microbial action. Adsorption experiments demonstrated the equilibrium adsorption capacities of Fe-Ni-LDH@CSBC for Cr(VI) could reach 1058.48 (C=10 mg/L) and 1394.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China. Electronic address:
Micropollutants are widespread in wastewater systems and can impact microbial communities and the transfer of antibiotic resistance genes (ARGs). Nevertheless, the specific concentration thresholds for these effects under environmental conditions remain largely unknown. This study evaluated six micropollutants at five environmentally relevant concentrations (0.
View Article and Find Full Text PDF