Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Excessive intake of melamine (MEL) can be harmful to human health, and it is important to establish a rapid and accurate MEL detection method. As the electrochemical activity of MEL is very low, ferrocenylglutathione (Fc-ECG) was used as an electron transfer mediator to assist with the detection of MEL using screen-printed carbon electrode (SPCE). This modified electrode (MEL/Fc-ECG/SPCE) was prepared by stepwise drop-casting and was fully characterized. Results showed that MEL significantly enhanced signal of Fc-ECG/SPCE sensor due to the three p-π conjugated double bonds that facilitated electron transfer. Under optimal conditions, the sensor exhibits two linearities in the range of 0.20-2.00 μM and 8.00-800 μM, with a sensitivity of 15.03 μA·μM·cm. The selectivity, stability, and reproducibility were investigated and successfully used to detect MEL in raw milk and confirms safety verification of foods. Moreover, a portable testing platform was designed for MEL detection based on a CH32 chip.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2022.132403 | DOI Listing |