98%
921
2 minutes
20
Relationships between tree size and water use indicate how soil water is partitioned between differently sized individuals, and hence competition for water. These relationships are rarely examined, let alone whether there is consistency in shape across populations. Competition for water among plants is often assumed to be size-symmetric, i.e., exponents (b1) of power functions (water use ∝ biomassb1) equal to 1, with all sizes using the same amount of water proportionally to their size. We tested the hypothesis that b1 actually varies greatly, and based on allometric theory, that b1 is only centered around 1 when size is quantified as basal area or sapwood area (not diameter). We also examined whether b1 varies spatially and temporally in relation to stand structure (height and density) and climate. Tree water use ∝ sizeb1 power functions were fitted for 80 species and 103 sites using the global SAPFLUXNET database. The b1 were centered around 1 when tree size was given as basal area or sapwood area, but not as diameter. The 95% confidence intervals of b1 included the theoretical predictions for the scaling of plant vascular networks. b1 changed through time within a given stand for the species with the longest time series, such that larger trees gained an advantage during warmer and wetter conditions. Spatial comparisons across the entire dataset showed that b1 correlated only weakly (R2 < 12%) with stand structure or climate, suggesting that inter-specific variability in b1 and hence the symmetry of competition for water may be largely related to inter-specific differences in tree architecture or physiology rather than to climate or stand structure. In conclusion, size-symmetric competition for water (b1 ≈ 1) may only be assumed when size is quantified as basal area or sapwood area, and when describing a general pattern across forest types and species. There is substantial deviation in b1 between individual stands and species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838098 | PMC |
http://dx.doi.org/10.1093/treephys/tpac018 | DOI Listing |
Arch Insect Biochem Physiol
September 2025
Department of Plant Medicals, Andong National University, Andong, Republic of Korea.
The Asiatic apple leafminer, Phyllonorycter ringoniella (Matsumura), is a significant secondary pest of apple trees in Northeast Asia. To better understand its population dynamics, a population model based on temperature-developmental relationships was constructed. This model includes three sub-models: spring emergence, immature stage transition, and adult oviposition.
View Article and Find Full Text PDFGenetics
September 2025
Institute of Ecology and Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom.
Recent advances in methods to infer and analyse ancestral recombination graphs (ARGs) are providing powerful new insights in evolutionary biology and beyond. Existing inference approaches tend to be designed for use with fully-phased datasets, and some rely on model assumptions about demography and recombination rate. Here I describe a simple model-free approach for genealogical inference along the genome from unphased genotype data called Sequential Tree Inference by Collecting Compatible Sites (sticcs).
View Article and Find Full Text PDFInt J Phytoremediation
September 2025
Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, West Bengal, India.
Urbanization and increasing vehicular traffic have intensified air pollution, particularly the accumulation of particulate matter (PM), trace elements (TEs), and polycyclic aromatic hydrocarbons (PAHs) in urban environments. These pollutants pose significant risks to human health, urban ecosystems, and biodiversity. This study evaluates the efficacy of mixed-species vegetation barriers, comprising , , , and , in mitigating air pollution along three road types (highway, urban, and suburban).
View Article and Find Full Text PDFTrends Ecol Evol
September 2025
GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Kiel, Germany.
Chromosomal inversions are ubiquitous across the Tree of Life, with genome-wide studies revealing a bias toward smaller inversions, yet research has disproportionately focused on large, supergene-like inversions linked to discrete phenotypes. This limits our understanding of inversions' roles in trait evolution, as their size affects their potential functional impact. Investigation of smaller inversions and multi-inversion genotypes is crucial to elucidate their role in shaping continuous traits and evolutionary adaptation.
View Article and Find Full Text PDFMicrob Pathog
September 2025
College of Life Sciences and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. Electronic address:
The antibiotic-resistant Enterococcus faecium (E. faecium) is a significant health issue requiring alternative therapies. Phages could be an alternative to antibiotics and have promising activity in both in vitro and in vivo experiments.
View Article and Find Full Text PDF