98%
921
2 minutes
20
Background: This study was the first human validation of the gram-positive bacterial DNA polymerase IIIC target in patients with Clostridioides difficile infection. The primary objectives were to assess clinical cure rates and adverse events (AEs). Secondary objectives were to evaluate plasma/fecal pharmacokinetics, microbiologic eradication, microbiome and bile acid effects, and sustained clinical cure (SCC) with ibezapolstat.
Methods: This single-arm, open-label, phase 2a study enrolled adults with C. difficile infection at 4 US centers. Patients received ibezapolstat 450 mg orally every 12 hours for 10 days and followed for an additional 28 days to assess study objectives.
Results: Ten patients with a mean (standard deviation [SD]) age of 49 [15] years were enrolled. Seven AEs were reported classified as mild-moderate. Plasma levels of ibezapolstat ranged from 233 to 578 ng/mL while mean (SD) fecal levels were 416 (494) µg/g stool by treatment day 3 and >1000 µg/g stool by days 8-10. A rapid increase in alpha diversity in the fecal microbiome was noted after starting ibezapolstat therapy, which was maintained after completion of therapy. A proportional decrease in Bacteroidetes phylum was observed (mean change [SD], -10.0% [4.8%]; P = .04) with a concomitantly increased proportion of Firmicutes phylum (+14.7% [5.4%]; P = .009). Compared with baseline, total primary bile acids decreased by a mean (SD) of 40.1 (9.6) ng/mg stool during therapy (P < .001) and 40.5 (14.1) ng/mg stool after completion of therapy (P = .007). Rates of both initial clinical cure and SCC at 28 days were 100% (10 of 10 patients).
Conclusions: In this phase 2a study, 10 of 10 patients achieved SCC, demonstrated favorable pharmacokinetics, minimal AEs, and beneficial microbiome and bile acids results. These results support continued clinical development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525077 | PMC |
http://dx.doi.org/10.1093/cid/ciac096 | DOI Listing |
Clin Gastroenterol Hepatol
September 2025
Inflammatory Bowel Disease Center at NYU Langone Health, 305 East 33(rd) Street, New York, NY 10016. Electronic address:
Antimicrob Steward Healthc Epidemiol
September 2025
National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT, Australia.
Background: infections (CDI) increased at a large, regional hospital in New South Wales, Australia, in 2021, coinciding with an increase at hospitals Australia wide. We aimed to investigate the association between antibiotic prescribing practices and hospital-acquired CDI at the hospital to inform antimicrobial stewardship (AMS) programs.
Methods: We conducted a retrospective case-control study for the period July 1, 2018, and June 30, 2022.
J Breath Res
September 2025
Shanghai Children's Hospital, 355 Luding Road, Shanghai, 200040, CHINA.
Bacterial volatile organic compounds (VOCs) have been investigated as non-invasive approaches for the diagnosis of infectious diseases. Here, we aimed to explore potential diagnostic markers by profiling VOCs in cultures of unique clinical Clostridioides difficile (C. difficile) isolates and stool samples from pediatric patients with C.
View Article and Find Full Text PDFJ Infect Dev Ctries
August 2025
Division of Infectious Disease, Department of Internal Medicine, Phramongkutklao Hospital and Phramongkutklao College of Medicine, Bangkok 10400, Thailand.
Introduction: Clostridioides difficile often causes hospital-acquired diarrhea, leading to unfavorable treatment outcomes. This study investigates CDI treatment outcomes and factors affecting severity and mortality at a university hospital in Thailand.
Methodology: A retrospective study was conducted from June 2019 to December 2021.
Curr Opin Infect Dis
September 2025
Department of Microbiology, Royal Melbourne Hospital.
Purpose Of Review: Diagnostic stewardship (DS) aims to optimise the use of laboratory testing to improve patient care while reducing unnecessary tests. This review examines recent evidence on DS interventions to optimise the use of resources, focusing on three key areas: reducing unnecessary testing, maximising the impact of existing tests, and avoiding the overdiagnosis of hospital-acquired infections.
Recent Findings: Multiple interventions have demonstrated effectiveness in reducing unnecessary blood and urine culture testing, including clinical decision support tools, education programs, and multidisciplinary approaches.