Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Filamentous growth in is a stress response commonly induced under nutrient deprivation and by certain alcohols. It is a compound phenotype characterized by pseudohyphal growth, invasion and a shift to more polarized budding. Previous methods have not allowed the time-resolved determination of filamentous growth. Here we present a new method for budding pattern characterization that enables the measurement of filamentous growth and metabolite concentration during yeast cell growth at precise time intervals. By combining chemical cell immobilization and single-cell imaging using an oCelloScope™, this method provides more accurate budding pattern classification compared with previous methods. The applications of the method include, for example, investigation of quorum sensing-controlled yeast filamentous growth and metabolism under stress and identification of toxic metabolites.

Download full-text PDF

Source
http://dx.doi.org/10.2144/btn-2021-0120DOI Listing

Publication Analysis

Top Keywords

filamentous growth
16
budding pattern
12
pattern classification
8
previous methods
8
growth
6
reliable budding
4
classification yeast
4
yeast cells
4
cells time-resolved
4
time-resolved measurement
4

Similar Publications

Microbial co-cultures provide significant advantages over commonly used axenic cultures in biotechnological processes, including increased productivity and access to novel natural products. However, differentiated quantification of the microorganisms in co-cultures remains challenging using conventional measurement techniques. To address this, a fluorescence-based approach was developed to enable the differentiated online monitoring of microbial growth in co-cultures.

View Article and Find Full Text PDF

Background: Actinomyces graevenitzii is a relatively uncommon Actinomyces species, which is an oral species and predominantly recovered from respiratory locations [1,2]. It is a gram-positive anaerobic bacteria or microaerobic filamentation bacteria, which can induce pyogenic and granulomatous inflammation characterized by swelling and concomitant pus, sinus formation, and the formation of yellow sulfur granules. All tissues and organs can be infected; the most common type involves the neck and face (55%), followed by the abdominal and pelvic cavities (20%).

View Article and Find Full Text PDF

Bacteria often encounter physico-chemical stresses that disrupt division, leading to filamentation, where cells elongate without dividing. Although this adaptive response improves survival, it also exposes filaments to significant mechanical strain, raising questions about the mechanochemical feedback in bacterial systems. In this study, we investigate how mechanical strain modifies the geometry of bacterial filaments and influences the Min oscillatory system, a reaction-diffusion network central to division in Escherichia coli.

View Article and Find Full Text PDF

The structural role of β-1,6-glucan has remained under-investigated in filamentous fungi compared to other fungal cell wall polymers, and previous studies have shown that the cell wall of the mycelium of did not contain β-1,6-glucans. In contrast, the current solid-state NMR investigations showed that the conidial cell wall contained a low amount of β-1,6-glucan. ssNMR comparisons of the and β-1,6-glucans showed they are structurally similar.

View Article and Find Full Text PDF

In the opportunistic pathogen , hyphal growth and virulence factor expression are regulated by environmental and chemical cues. Farnesol is a secreted autoregulatory molecule that represses filamentation. It is derived from farnesyl pyrophosphate (FPP), an ergosterol biosynthesis pathway intermediate.

View Article and Find Full Text PDF