98%
921
2 minutes
20
Background: Although surgical pathology or biopsy are considered the gold standard for glioma grading, these procedures have limitations. This study set out to evaluate and validate the predictive performance of a deep learning radiomics model based on contrast-enhanced T1-weighted multiplanar reconstruction images for grading gliomas.
Methods: Patients from three institutions who diagnosed with gliomas by surgical specimen and multiplanar reconstructed (MPR) images were enrolled in this study. The training cohort included 101 patients from institution 1, including 43 high-grade glioma (HGG) patients and 58 low-grade glioma (LGG) patients, while the test cohorts consisted of 50 patients from institutions 2 and 3 (25 HGG patients, 25 LGG patients). We then extracted radiomics features and deep learning features using six pretrained models from the MPR images. The Spearman correlation test and the recursive elimination feature selection method were used to reduce the redundancy and select most predictive features. Subsequently, three classifiers were used to construct classification models. The performance of the grading models was evaluated using the area under the receiver operating curve, sensitivity, specificity, accuracy, precision, and negative predictive value. Finally, the prediction performances of the test cohort were compared to determine the optimal classification model.
Results: For the training cohort, 62% (13 out of 21) of the classification models constructed with MPR images from multiple planes outperformed those constructed with single-plane MPR images, and 61% (11 out of 18) of classification models constructed with both radiomics features and deep learning features had higher area under the curve (AUC) values than those constructed with only radiomics or deep learning features. The optimal model was a random forest model that combined radiomic features and VGG16 deep learning features derived from MPR images, which achieved AUC of 0.847 in the training cohort and 0.898 in the test cohort. In the test cohort, the sensitivity, specificity, and accuracy of the optimal model were 0.840, 0.760, and 0.800, respectively.
Conclusions: Multiplanar CE-T1W MPR imaging features are more effective than features from single planes when differentiating HGG and LGG. The combination of deep learning features and radiomics features can effectively grade glioma and assist clinical decision-making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739133 | PMC |
http://dx.doi.org/10.21037/qims-21-722 | DOI Listing |
BMC Oral Health
September 2025
Oral and Maxillofacial Radiology Department, Cairo university, Cairo, Egypt.
Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.
Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.
BMC Psychiatry
September 2025
Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.
View Article and Find Full Text PDFBMC Musculoskelet Disord
September 2025
Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.
Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.
Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.
J Cancer Res Clin Oncol
September 2025
Department of Surgery, Mannheim School of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.
Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.
Sci Rep
September 2025
Fukushima Renewable Energy Institute, Koriyama, Japan.
Ultra-fast charging stations (UFCS) present a significant challenge due to their high power demand and reliance on grid electricity. This paper proposes an optimization framework that integrates deep learning-based solar forecasting with a Genetic Algorithm (GA) for optimal sizing of photovoltaic (PV) and battery energy storage systems (BESS). A Gated Recurrent Unit (GRU) model is employed to forecast PV output, while the GA maximizes the Net Present Value (NPV) by selecting optimal PV and BESS sizes tailored to weekday and weekend demand profiles.
View Article and Find Full Text PDF