Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, we aimed to investigate whether the anti-diabetic effects of γ-aminobutyric acid (GABA) and insulin can be mediated through the regulation of gene expression related to irisin production and mitochondrial biogenesis in type 2 diabetic mellitus (T2DM) rats. Four groups (n = 6) were used in this study: control, T2DM, T2DM + insulin, and T2DM + GABA groups. After T2DM induction for 3 months (high-fat diet + 35 mg/kg streptozotocin) and treatment with GABA or insulin for 3 months, circulating levels of FBG, triglyceride, LDL, Ox-LDL, and insulin as well as hepatic and serum irisin levels were measured. The mRNA expressions of fibronectin type III domain-containing protein 5 (FNDC5), mitochondrial transcription factor A (TFAM), and mitochondrial uncoupling protein 3 (UCP3) were also evaluated in the skeletal muscle of all groups. GABA therapy improved the FBG and insulin levels in diabetic rats. Insulin treatment significantly reduced FBG and failed to maintain glucose close to the control level. Insulin or GABA therapy significantly decreased the levels of LDL, Ox-LDL, and HOMA-IR index. Circulating irisin levels were markedly decreased in insulin-treated group, while irisin levels did not show significant changes in GABA-treated group compared with control group. GABA or insulin therapy increased mRNA expressions of TFAM and UCP3 in diabetic rats. GABA therapy also led to a significant increase in FNDC5 mRNA. Our findings suggest that the anti-diabetic effect of GABA may be mediated, in part, by a decrease in Ox-LDL levels and an increase in the levels of irisin as well as FNDC5, TFAM, and UCP3 gene expression in T2DM rats.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-022-02211-9DOI Listing

Publication Analysis

Top Keywords

irisin levels
16
tfam ucp3
12
mrna expressions
12
diabetic rats
12
gaba insulin
12
gaba therapy
12
levels
9
fndc5 tfam
8
skeletal muscle
8
serum irisin
8

Similar Publications

X-Linked Hypophosphatemia: Role of Fibroblast Growth Factor 23 on Human Skeletal Muscle-Derived Cells.

Calcif Tissue Int

September 2025

FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.

X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).

View Article and Find Full Text PDF

: Postmenopausal conditions can lead to metabolic disorders such as obesity and steatosis. (PT), a prominent traditional Chinese medicine, exerts potential therapeutic effects against hepatic injury. Nevertheless, the extent to which PT ameliorates liver damage resulting from estrogen deficiency, along with the associated mechanisms, remains poorly understood.

View Article and Find Full Text PDF

Stable cytokine network during hypoxia and exercise in patients with Fontan circulation.

Int J Cardiol

September 2025

Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany. Electronic address:

Background: Patients with Fontan circulation are often advised to avoid hypoxic exposure due to presumed cardiopulmonary vulnerability. Low-grade inflammation has also been reported in this population and may be influenced by hypoxia and/or exercise. Based on the potential interaction between hypoxia and submaximal exercise in modulating inflammatory signaling, we hypothesized that this combination could exacerbate subclinical inflammation.

View Article and Find Full Text PDF

Although exercise is known to exert anti-inflammatory effects in neurodegenerative diseases, its specific impact and underlying mechanisms in Parkinson's disease (PD) remain poorly understood. This study explores the effects of exercise on microglia-mediated neuroinflammation and apoptosis in a PD model, focusing on the role of irisin signaling in mediating these effects. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model, we found that a 10-week treadmill exercise regimen significantly enhanced motor function, reduced dopaminergic neuron loss, attenuated neuronal apoptosis, and alleviated neuroinflammation.

View Article and Find Full Text PDF

Author Correction: Serum irisin levels in colorectal cancer patients.

Eur Rev Med Pharmacol Sci

August 2025

Department of Biomaterials and Tissue Engineering, Institute of Science, Harran University, Şanlıurfa, Turkey.

Correction to: Eur Rev Med Pharmacol Sci 2023; 27 (4): 1474-1479-DOI: 10.26355/eurrev_202302_31387-PMID: 36876687 published online on 1 March 2023.  This erratum serves to include the ethics approval date and approval number, which were unintentionally omitted from the originally published online version of the article.

View Article and Find Full Text PDF