98%
921
2 minutes
20
It has been increasingly recognized that CWIN (cell wall invertase) and sugar transporters including STP (sugar transport protein) and SWEET (sugar will eventually be exported transporters) play important roles in plant-pathogen interactions. However, the information available in the literature comes from diverse systems and often yields contradictory findings and conclusions. To solve this puzzle, we provide here a comprehensive assessment of the topic. Our analyses revealed that the regulation of plant-microbe interactions by CWIN, SWEET, and STP is conditioned by the specific pathosystems involved. The roles of CWINs in plant resistance are largely determined by the lifestyle of pathogens (biotrophs versus necrotrophs or hemibiotrophs), possibly through CWIN-mediated salicylic acid or jasmonic acid signaling and programmed cell death pathways. The up-regulation of SWEETs and STPs may enhance or reduce plant resistance, depending on the cellular sites from which pathogens acquire sugars from the host cells. Finally, plants employ unique mechanisms to defend against viral infection, in part through a sugar-based regulation of plasmodesmatal development or aperture. Our appraisal further calls for attention to be paid to the involvement of microbial sugar metabolism and transport in plant-pathogen interactions, which is an integrated but overlooked component of such interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982439 | PMC |
http://dx.doi.org/10.1093/jxb/erab562 | DOI Listing |
Funct Integr Genomics
September 2025
Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.
View Article and Find Full Text PDFmSphere
September 2025
Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.
Through horizontal gene transfer, closely related bacterial strains assimilate distinct sets of genes, resulting in significantly varied lifestyles. However, it remains unclear how strains properly regulate horizontally transferred virulence genes. We hypothesized that strains may use components of the core genome to regulate diverse horizontally acquired genes.
View Article and Find Full Text PDFPlant Cell
September 2025
Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
Communication between cellular organelles is essential for mounting effective innate immune responses. The transport of organelles to pathogen penetration sites and their assembly around the host membrane, which delineates the plant-pathogen interface, are well-documented. However, whether organelles associate with these specialized interfaces, and the extent to which this process contributes to immunity, remain unknown.
View Article and Find Full Text PDFPLoS One
September 2025
College of Life Sciences, Jinggangshan University, Ji'an City, Jiangxi Province, China.
Jinggangshan honey pomelo is a specialty fruit grown in Jiangxi Province, China. Pomelo yellow spot disease, also known as greasy spot disease, is a fungal pathology primarily affecting pomelo (Citrus maxima) leaves and fruits. The causative agent is the ascomycete fungus Phyllosticta citricarpa, taxonomically classified within the phylum Ascomycota.
View Article and Find Full Text PDFNew Phytol
October 2025
The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK.