Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Motivation: Despite of the fast development of highly effective vaccines to control the current COVID-19 pandemics, the unequal distribution and availability of these vaccines worldwide and the number of people infected in the world lead to the continuous emergence of Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) variants of concern. Therefore, it is likely that real-time genomic surveillance will be continuously needed as an unceasing monitoring tool, necessary to follow the spread of the disease and the evolution of the virus. In this context, new genomic variants of SARS-CoV-2, including variants refractory to current vaccines, makes genomic surveillance programs tools of utmost importance. Nevertheless, the lack of appropriate analytical tools to quickly and effectively access the viral composition in meta-transcriptomic sequencing data, including environmental surveillance, represent possible challenges that may impact the fast adoption of this approach to mitigate the spread and transmission of viruses.

Results: We propose a statistical model for the estimation of the relative frequencies of SARS-CoV-2 variants in pooled samples. This model is built by considering a previously defined selection of genomic polymorphisms that characterize SARS-CoV-2 variants. The methods described here support both raw sequencing reads for polymorphisms-based markers calling and predefined markers in the variant call format. Results obtained using simulated data show that our method is quite effective in recovering the correct variant proportions. Further, results obtained by considering longitudinal data from wastewater samples of two locations in Switzerland agree well with those describing the epidemiological evolution of COVID-19 variants in clinical samples of these locations. Our results show that the described method can be a valuable tool for tracking the proportions of SARS-CoV-2 variants in complex mixtures such as waste water and environmental samples.

Availability And Implementation: http://github.com/rvalieris/LCS.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btac047DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 variants
16
pooled samples
8
genomic surveillance
8
samples locations
8
variants
7
sars-cov-2
6
mixture model
4
model determining
4
determining sars-cov-2
4
sars-cov-2 variant
4

Similar Publications

The COVID-19 pandemic, caused by the continuously evolving SARS-CoV-2 virus, has presented persistent global health challenges. As novel variants emerge, many with enhanced transmissibility and immune evasion capabilities, concerns have intensified regarding the efficacy of existing vaccines and therapeutics. This review provides a comprehensive overview of the current landscape of COVID-19 vaccination, including the development and performance of monovalent and bivalent boosters, and examines their effectiveness against newly emerging variants of interest (VOIs) and variants under monitoring (VUMs), such as JN.

View Article and Find Full Text PDF

New SARS-CoV-2 variants continue to emerge and may cause new waves of COVID-19. Antibody evasion is a major driver of variant emergence but variants can also exhibit altered capacity to enter lung cells and to use ACE2 species orthologues for cell entry. Here, we assessed cell line tropism, usage of ACE2 orthologues and antibody evasion of variant MC.

View Article and Find Full Text PDF

A bivalent SARS-CoV-2 subunit vaccine for cats neutralizes both the original ancestral strain and BA.1 Pseudovirus carrying the 453F and 501 T mutation.

Vaccine

September 2025

College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Jiangxia Laboratory, Wuhan 430200, China. Electronic address:

The spillover and spillback of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between humans and animals, especially companion animals, threaten global public health security. However, risk assessment of SARS-CoV-2 variants infecting companion animals and the development of corresponding prevention and control technologies are lacking. The aim of this study is to assess the potential risk of enhancement of the infectivity of SARS-CoV-2 in cats owing to mutations at key sites within the spike (S) protein receptor-binding domain (RBD) region and develop an efficient vaccine to cross-neutralize high-risk SARS-CoV-2 variants.

View Article and Find Full Text PDF

Background: Obesity was a risk factor for severe COVID-19 in children during early outbreaks of ancestral SARS-CoV-2 and the Delta variant. However, the relationship between obesity and COVID-19 severity during the Omicron wave remains unclear.

Methods: This multicenter, observational study included polymerase chain r eaction-confirmed SARS-CoV-2-infected children and adolescents from Australia, Brazil, Italy, Portugal, Switzerland, Thailand, the United Kingdom and the United States hospitalized between January 1, 2020, and March 31, 2022.

View Article and Find Full Text PDF

The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored.

View Article and Find Full Text PDF