98%
921
2 minutes
20
Aims: To apply a deep learning model for automatic localisation of the scleral spur (SS) in anterior segment optical coherence tomography (AS-OCT) images and compare the reproducibility of anterior chamber angle (ACA) width between deep learning located SS (DLLSS) and manually plotted SS (MPSS).
Methods: In this multicentre, cross-sectional study, a test dataset comprising 5166 AS-OCT images from 287 eyes (116 healthy eyes with open angles and 171 eyes with primary angle-closure disease (PACD)) of 287 subjects were recruited from four ophthalmology clinics. Each eye was imaged twice by a swept-source AS-OCT (CASIA2, Tomey, Nagoya, Japan) in the same visit and one eye of each patient was randomly selected for measurements of ACA. The agreement between DLLSS and MPSS was assessed using the Euclidean distance (ED). The angle opening distance (AOD) of 750 µm (AOD750) and trabecular-iris space area (TISA) of 750 µm (TISA750) were calculated using the CASIA2 embedded software. The repeatability of ACA width was measured.
Results: The mean age was 60.8±12.3 years (range: 30-85 years) for the normal group and 63.4±10.6 years (range: 40-91 years) for the PACD group. The mean difference in ED for SS localisation between DLLSS and MPSS was 66.50±20.54 µm and 84.78±28.33 µm for the normal group and the PACD group, respectively. The span of 95% limits of agreement between DLLSS and MPSS was 0.064 mm for AOD750 and 0.034 mm for TISA750. The respective repeatability coefficients of AOD750 and TISA750 were 0.049 mm and 0.026 mm for DLLSS, and 0.058 mm and 0.030 mm for MPSS.
Conclusion: DLLSS achieved comparable repeatability compared with MPSS for measurement of ACA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313952 | PMC |
http://dx.doi.org/10.1136/bjophthalmol-2021-319798 | DOI Listing |
Mol Divers
September 2025
Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.
View Article and Find Full Text PDFExp Brain Res
September 2025
School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, China.
This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.
View Article and Find Full Text PDFPhys Eng Sci Med
September 2025
Department of Radiology, Otaru General Hospital, Otaru, Hokkaido, Japan.
In lung CT imaging, motion artifacts caused by cardiac motion and respiration are common. Recently, CLEAR Motion, a deep learning-based reconstruction method that applies motion correction technology, has been developed. This study aims to quantitatively evaluate the clinical usefulness of CLEAR Motion.
View Article and Find Full Text PDFChaos
September 2025
School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Although many real-world time series are complex, developing methods that can learn from their behavior effectively enough to enable reliable forecasting remains challenging. Recently, several machine-learning approaches have shown promise in addressing this problem. In particular, the echo state network (ESN) architecture, a type of recurrent neural network where neurons are randomly connected and only the read-out layer is trained, has been proposed as suitable for many-step-ahead forecasting tasks.
View Article and Find Full Text PDFRadiol Artif Intell
September 2025
Department of Radiology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, No. 197 Ruijin Er Road, Shanghai 200025, China.
Purpose To assess the effectiveness of an explainable deep learning (DL) model, developed using multiparametric MRI (mpMRI) features, in improving diagnostic accuracy and efficiency of radiologists for classification of focal liver lesions (FLLs). Materials and Methods FLLs ≥ 1 cm in diameter at mpMRI were included in the study. nn-Unet and Liver Imaging Feature Transformer (LIFT) models were developed using retrospective data from one hospital (January 2018-August 2023).
View Article and Find Full Text PDF