98%
921
2 minutes
20
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00428-021-03258-4 | DOI Listing |
Plant Cell Environ
September 2025
Department of Ornamental Plants, Faculty of Biotechnology and Horticulture, University of Agriculture, Kraków, Poland.
Plant Physiol Biochem
September 2025
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada. Electronic address:
Many plant-derived unusual fatty acids (UFAs) possess valuable chemical properties and have potential applications in the food, feed, and oleochemical industries. Despite significant interest, the mechanisms by which plants synthesize and accumulate these structurally distinct fatty acids remain only partially understood. While enzyme substrate specificities involved in UFA-containing storage lipid assembly have been well characterized in many prior studies, the biochemical roles of protein-protein interactions (PPIs) in coordinating UFA biosynthesis have received less attention.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong. Electronic address:
The increasing global demand for food and the adverse environmental impacts of excessive agrochemical use highlights the urgent need for sustainable and scalable seed treatment technologies. This paper reports a novel photothermal seed coating (QC@SCCNTs) with high biocompatibility, exceptional photothermal efficiency, and notable reusability, serving as an effective alternative to conventional chemical treatments. The coating consists of sericin-functionalized carboxylated carbon nanotubes (SCCNTs) electrostatically complexed with quaternary ammonium chitosan (QC), forming a composite film (QS film).
View Article and Find Full Text PDFPlant Biotechnol J
September 2025
Queensland Alliance for Agriculture and Food Innovation (QAAFI), University of Queensland, St Lucia, Queensland, Australia.
Gene expression of developing seeds drives essential processes such as nutrient storage, stress tolerance and germination. However, the spatial organisation of gene expression within the complex structure of the seed remains largely unexplored. Here we report the use of the STOmics spatial transcriptomics platform to visualise spatial expression patterns in the wheat (Triticum aestivum) seed at the critical period of grain filling in mid-seed development.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany.
Improving the nutritional quality of crops is crucial for human health, livestock, and agricultural productivity, especially on nutrient-limited soils. To address this, we investigated the variation and the genetic basis of mineral content, including, among others, calcium, iron, phosphorus, and zinc, in a diverse panel of maize (Zea mays L.) grown across environments.
View Article and Find Full Text PDF