98%
921
2 minutes
20
Transcranial magnetic stimulation (TMS)-evoked potentials (TEPs), recorded using electroencephalography (EEG), reflect a combination of TMS-induced cortical activity and multi-sensory responses to TMS. The auditory evoked potential (AEP) is a high-amplitude sensory potential-evoked by the "click" sound produced by every TMS pulse-that can dominate the TEP and obscure observation of other neural components. The AEP is peripherally evoked and therefore should not be stimulation site specific. We address the problem of disentangling the peripherally evoked AEP of the TEP from components evoked by cortical stimulation and ask whether removal of AEP enables more accurate isolation of TEP. We hypothesized that isolation of the AEP using Independent Components Analysis (ICA) would reveal features that are stimulation site specific and unique individual features. In order to improve the effectiveness of ICA for removal of AEP from the TEP, and thus more clearly separate the transcranial-evoked and non-specific TMS-modulated potentials, we merged sham and active TMS datasets representing multiple stimulation conditions, removed the resulting AEP component, and evaluated performance across different sham protocols and clinical populations using reduction in Global and Local Mean Field Power (GMFP/LMFP) and cosine similarity analysis. We show that removing AEPs significantly reduced GMFP and LMFP in the post-stimulation TEP (14 to 400 ms), driven by time windows consistent with the N100 and P200 temporal characteristics of AEPs. Cosine similarity analysis supports that removing AEPs reduces TEP similarity between subjects and reduces TEP similarity between stimulation conditions. Similarity is reduced most in a mid-latency window consistent with the N100 time-course, but nevertheless remains high in this time window. Residual TEP in this window has a time-course and topography unique from AEPs, which follow-up exploratory analyses suggest could be a modulation in the alpha band that is not stimulation site specific but is unique to individual subject. We show, using two datasets and two implementations of sham, evidence in cortical topography, TEP time-course, GMFP/LMFP and cosine similarity analyses that this procedure is effective and conservative in removing the AEP from TEP, and may thus better isolate TMS-evoked activity. We show TEP remaining in early, mid and late latencies. The early response is site and subject specific. Later response may be consistent with TMS-modulated alpha activity that is not site specific but is unique to the individual. TEP remaining after removal of AEP is unique and can provide insight into TMS-evoked potentials and other modulated oscillatory dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791940 | PMC |
http://dx.doi.org/10.1038/s41598-022-05397-3 | DOI Listing |
ACS Biomater Sci Eng
September 2025
Materials Engineering, McGill university, Montreal H3A0C5, Canada.
Transcutaneous devices such as dental implants frequently fail due to infections at their interfaces with epithelial tissues. These infections are facilitated by the lack of integration between the devices and the surrounding soft tissues. This study aims to improve epithelial integration through surface modification of a transcutaneous implant material (polyetheretherketone (PEEK)).
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston, Massachusetts 02215, United States.
The cytosolic iron-sulfur cluster assembly (CIA) targeting complex maturates over 30 cytosolic and nuclear Fe-S proteins, raising the question of how a single complex recognizes such a diverse set of clients. The discovery of a C-terminal targeting complex recognition (TCR) peptide in up to 25% of CIA clients provided a clue to substrate specificity, yet the molecular and energetic basis for this interaction remained unresolved. By integrating computational and biochemical approaches, we show that the TCR peptide binds a conserved interface between the Cia1 and Cia2 subunits of the targeting complex, even in the absence of the Fe-S cluster.
View Article and Find Full Text PDFPLoS One
September 2025
Department Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
Tattoos and permanent make-up (PMU) gain increasing popularity among the general population. There are indications that pigments or their fragments may translocate within the body, however knowledge about possible systemic adverse effects related to tattoos is very limited. We investigated the prevalence of systemic chronic health effects including cardiovascular diseases, cancer and liver toxicity and their relationship with the presence and characteristics of tattoos and PMU as part of the LIFE-Adult-study, a population-based cohort study.
View Article and Find Full Text PDFJCI Insight
September 2025
Department of Pharmacology, University of Michigan, Ann Arbor, United States of America.
Cardiac hypertrophy is a common adaptation to cardiovascular stress and often a prelude to heart failure. We examined how S-palmitoylation of the small GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), impacts cardiomyocyte stress signaling. Mutation of the cysteine-178 palmitoylation site impaired activation of Rac1 when overexpressed in cardiomyocytes.
View Article and Find Full Text PDFQual Life Res
September 2025
The Kids Research Institute Australia, The University of Western Australia, P.O. Box 855, West Perth, WA, 6872, Australia.
Purpose: CDKL5 deficiency disorder (CDD) is a rare developmental and epileptic encephalopathy. Greater understanding of the smallest meaningful improvements for individuals with CDD in clinical trials and practice is needed for a person-centred approach to treatment efficacy. This study explored how parent/caregivers of people with CDD understood meaningful improvements and described change for priority functional domains including communication, gross motor, fine motor, feeding.
View Article and Find Full Text PDF