98%
921
2 minutes
20
Over 170 post-transcriptional RNA modifications have been described and are common in all kingdoms of life. These modifications range from methylation to complex chemical structures, with methylation being the most abundant. RNA modifications play a key role in RNA folding and function and their dysregulation in humans has been linked to several diseases such as cancer, metabolic diseases or neurological disorder. Nowadays, liquid chromatography-tandem mass spectrometry is considered the gold standard method for the identification and quantification of these modifications due to its sensitivity and accuracy. However, the analysis of modified ribonucleosides by mass spectrometry is complex due to the presence of positional isomers. In this scenario, optimal separation of these compounds by highly sensitive liquid chromatography combined with the generation of high-information spectra is critical to unequivocally identify them, especially in high-complex mixtures. Here we present an analytical method that comprises a new type of mixed-mode nano-flow liquid chromatography column combined with high- and low-collision energy data-independent mass spectrometric acquisition for the identification and quantitation of modified ribonucleosides. The method produces content-rich spectra and combines targeted and screening capabilities thus enabling the identification of a variety of modified nucleosides in biological matrices by single-shot liquid chromatographic analysis coupled to mass spectrometry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2022.462803 | DOI Listing |
J Proteome Res
September 2025
Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington 98195, United States.
Retinol binding protein 4 (RBP4), the circulating carrier of retinol, complexes with transthyretin (TTR) and is a potential biomarker of cardiometabolic disease. However, RBP4 quantitation relies on immunoassays and Western blots without retinol and TTR measurement. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous absolute quantitation of circulating RBP4 and TTR is critical to establishing their biomarker potential.
View Article and Find Full Text PDFMetab Brain Dis
September 2025
Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, Hubei, 430022, China.
Major depression disorder (MDD) is a mental condition that significantly threatens both physical and psychological health. This study aimed to discern variances in plasma metabolic profiles between MDD sufferers and healthy counterparts. Additionally, we tracked the hospitalization journey of MDD patients to investigate the normalization of metabolic irregularities through conventional treatment in the form of self-control.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.
The surfaces of 1D layered lepidocrocite-structured titanates (1DLs) are negatively charged due to an oxygen-to-titanium atomic ratio >2. This, and their layered structure, allow for facile ion exchange and high colloidal stability, demonstrated by ζ-potentials of ≈ -85 mV at their unadjusted pH of ≈10.4.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China.
Adulterated yohimbine (YHB) in food poses a risk to public health, making it imperative to develop fast and sensitive detection methods. In this study, computational-chemistry-based prediction was employed to design YHB haptens for generating the high-affinity monoclonal antibody Yohi-4A7, which exhibited an optimal half-inhibitory concentration (IC) of 1.69 ng/mL against YHB.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
Low molecular weight amines promote sulfate (SO and HSO) formation through acid-base reactions, contributing to fine particulate matter (PM). Heterogeneous ozonation converts nontoxic amine salts into highly toxic products, yet the ozonation activation mechanism is unclear. This work reveals a sulfate-dominant ozonation mechanism of amine salts in fine PM by combining advanced mass spectrometry and ab initio calculation methods.
View Article and Find Full Text PDF