98%
921
2 minutes
20
The fundamental role of epigenetic regulatory mechanisms involved in neuroplasticity and adaptive responses to traumatic brain injury (TBI) is gaining increased recognition. TBI-induced neurodegeneration is associated with several changes in the expression-activity of various epigenetic regulatory enzymes, including histone deacetylases (HDACs). In this study, PET/CT with 6-([F]trifluoroacetamido)-1- hexanoicanilide ([F]TFAHA) to image spatial and temporal dynamics of HDACs class IIa expression-activity in brains of adult rats subjected to a weight drop model of diffuse, non-penetrating, mild traumatic brain injury (mTBI). The mTBI model was validated by histopathological and immunohistochemical analyses of brain tissue sections for localization and magnitude of expression of heat-shock protein-70 kDa (HSP70), amyloid precursor protein (APP), cannabinoid receptor-2 (CB2), ionized calcium-binding adapter protein-1 (IBA1), histone deacetylase-4 and -5 (HDAC4 and HDAC5). In comparison to baseline, the expression-activities of HDAC4 and HDAC5 were downregulated in the hippocampus, nucleus accumbens, peri-3rd ventricular part of the thalamus, and substantia nigra at 1-3 days post mTBI, and remained low at 7-8 days post mTBI. Reduced levels of HDAC4 and HDAC5 expression observed in neurons of these brain regions post mTBI were associated with the reduced nuclear and neuropil levels of HDAC4 and HDAC5 with the shift to perinuclear localization of these enzymes. These results support the rationale for the development of therapeutic strategies to upregulate expression-activity of HDACs class IIa post-TBI. PET/CT (MRI) with [F]TFAHA can facilitate the development and clinical translation of unique therapeutic approaches to upregulate the expression and activity of HDACs class IIa enzymes in the brain after TBI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629393 | PMC |
http://dx.doi.org/10.1038/s41380-021-01369-7 | DOI Listing |
Arch Toxicol
September 2025
Mainz University Medical Center, Mainz, Germany.
Opinion Letter to Sin et al (Science Advances, 2025), Sorbate induces lysine sorbylation through noncanonical activities of class I HDACs to regulate the expression of inflammation genes.
View Article and Find Full Text PDFBiomolecules
July 2025
Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, 33100 Udine, Italy.
Class IIa histone deacetylases (HDACs) are pleiotropic regulators of various differentiation pathways and adaptive responses. They form complexes with other co-repressors and can bind to DNA by interacting with selected transcription factors, with members of the Myocyte Enhancer Factor-2 (MEF2) family being the best characterized. A notable feature of class IIa HDACs is the substitution of tyrosine for histidine in the catalytic site, which has occurred over the course of evolution and has a profound effect on the efficiency of catalysis against acetyl-lysine.
View Article and Find Full Text PDFNat Commun
August 2025
Aix Marseille Univ, CNRS, Inserm, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France.
Histone deacetylases (HDACs) are epigenetic regulators frequently altered in cancer. Here we report that overexpression of HDAC1/2 occurs in Hepatocellular Carcinoma (HCC) patients, correlating with poor prognosis. We show that romidepsin, a class-I HDAC inhibitor, elicits a combinatorial perturbation of distinct molecular processes in HCC cells, altering lipid composition, mitotic spindle machinery, and levels of cell cycle/survival signals.
View Article and Find Full Text PDFFuture Med Chem
September 2025
Glycogene Pharmaceutical Co., Ltd., Wuhan, Hubei Province, PR China.
Prostate cancer, a malignant tumor arising from the prostate gland, ranks as one of the most commonly diagnosed cancers in men globally and the eighth leading cause of cancer-related mortality worldwide. Hydroxamic acid derivatives, identified as outstanding histone deacetylase (HDAC) inhibitors, are a class of compounds with significant research interest in prostate cancer due to their diverse mechanisms of action, primarily involving epigenetic regulation and targeted enzyme inhibition. Recent studies highlight that incorporating diverse anti-prostate cancer pharmacophores with a hydroxamic acid moiety can potentiate their inhibitory efficacy against HDACs or endow them with multi-target HDAC inhibitory capabilities.
View Article and Find Full Text PDFJ Biol Chem
August 2025
Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA. Electronic address:
Metabolism and post-translational modifications (PTMs) are intrinsically linked and the number of identified metabolites that can covalently modify proteins continues to increase. This metabolism/PTM crosstalk is especially true for lactate, the product of anaerobic metabolism following glycolysis. Lactate forms an amide bond with the ε-amino group of lysine, a modification known as lysine lactylation, or Kla.
View Article and Find Full Text PDF