Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Earth's mantle releases 38.7 ± 2.9 Tg/yr CO along with other reduced and oxidized gases to the atmosphere shaping microbial metabolism at volcanic sites across the globe, yet little is known about its impact on microbial life under non-thermal conditions. Here, we perform comparative metagenomics coupled to geochemical measurements of deep subsurface fluids from a cold-water geyser driven by mantle degassing. Key organisms belonging to uncultivated Candidatus Altiarchaeum show a global biogeographic pattern and site-specific adaptations shaped by gene loss and inter-kingdom horizontal gene transfer. Comparison of the geyser community to 16 other publicly available deep subsurface sites demonstrate a conservation of chemolithoautotrophic metabolism across sites. In silico replication measures suggest a linear relationship of bacterial replication with ecosystems depth with the exception of impacted sites, which show near surface characteristics. Our results suggest that subsurface ecosystems affected by geological degassing are hotspots for microbial life in the deep biosphere.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8755723PMC
http://dx.doi.org/10.1038/s41467-021-27783-7DOI Listing

Publication Analysis

Top Keywords

subsurface ecosystems
8
geological degassing
8
microbial life
8
deep subsurface
8
genetic diversity
4
diversity terrestrial
4
subsurface
4
terrestrial subsurface
4
ecosystems impacted
4
impacted geological
4

Similar Publications

Serpentinites, hydrated ultramafic rocks that produce [hyper]alkaline, reducing, H2-rich groundwaters, host subsurface microbial ecosystems. Though in the presence of enormous reducing power, life in serpentinizing systems is limited by oxidant and carbon availability. The forms of carbon that support the serpentinite-hosted microbiome, and their rates of biological assimilation, remain poorly understood.

View Article and Find Full Text PDF

Functional river restoration as a lever for adapting to climate change from an interdisciplinary emblematic showcase on the Upper Rhine.

J Environ Manage

September 2025

Laboratoire Image, Ville, Environnement (LIVE UMR 7362), Université de Strasbourg, CNRS, ENGEES, ZAEU LTER, 3 rue de l'Argonne, Strasbourg, 67083, France.

Many large rivers have been regulated for navigation improvement, hydro-electricity production, agricultural development and flood protection. River regulation alters both aquatic and riverine habitat dynamics as well as ecological functionalities and ecosystem services. This study aims to evaluate the impacts of river regulation performed along the Rhine as well as climate change to develop a process-based restoration strategy for the Rhinau-Taubergiessen area.

View Article and Find Full Text PDF

Understanding the distribution patterns of soil bacterial community structure and diversity across different forest types is essential for elucidating the mechanisms underlying microbial community assembly and its ecological drivers, particularly under the pressures of climate change. In this study, we examined six forest types-including four monocultures and two mixed-species stands-to systematically evaluate the structural composition, diversity metrics, and functional potential of soil bacterial communities. Significant differences in microbial structure and functional composition were observed among forest types.

View Article and Find Full Text PDF

Constructed wetlands (CWs) face dual challenges of arsenic contamination and greenhouse gas (GHG) emissions, particularly concerning the competing processes of As(III) immobilization and methane-dependent As(V) reduction (AOM-AsR). To address this dilemma, we developed a novel microbial-nitrate-zero valent iron/manganese synergy (MNZS) system that establishes dynamic redox gradients through Fe/Mn-mediated electron flux regulation. The MNZS mechanism leverages zero valent iron/manganese (ZVI/ZVM) oxidation to create oxygen-depleted microzones, generating bioavailable Fe(II)/Mn(II) species while initiating microbial nitrate-reducing-coupled Fe(II)/Mn(II) oxidation (NRFO/NRMO).

View Article and Find Full Text PDF

Increased snowpack enhances ecological functions of cold-region constructed wetlands via plant-microbe interactions.

Water Res

August 2025

Key Laboratory of SFGA (SPA) on Conservation Ecology in the Northeast Tiger and Leopard National park & Jilin Provincial Key Laboratory of Wetland Ecological Functions and Ecological Security, College of Geography and Ocean Sciences, Yanbian University, Yanji, 133300, China.

Snowpack variations in cold regions exert profound influences on the ecological functioning of constructed wetlands (CWs), particularly with respect to GHG emissions and nutrient removal. However, the underlying mechanisms have yet to be clarified. This study established pilot-scale vertical subsurface flow CWs in Northeast China, with Phragmites australis and Iris sibirica, and applied doubled snowpack (DS) and natural snow cover (CK) during winter.

View Article and Find Full Text PDF