98%
921
2 minutes
20
Pluronic F127 is a thermosensitive polymer that has been extensively studied and utilized in biomedicine. To improve the gelation properties of F127, α-cyclodextrin was introduced by physical interactions, such as forming inclusion complexes, hydrogen bond self-assembly, and hydrophobic interactions, to prepare F127-α-CD hydrogels. This study explored the temperature-dependent sol-gel transition behavior, gelation mechanism, interior morphology, and controlled release of the anticancer drug 5-fluorouracil. Results showed that hydrogel could be obtained at 1.0%-8.0% weight content of F127. The cross-linking points in this system were PEO-α-CD microcrystalline region and micelle with poly(propylene oxide) as the core. The network inside F127-α-CD hydrogels made it stable and conducive for controlled release. Therefore, this hydrogel is a promising drug release system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.8b00698 | DOI Listing |
Regen Biomater
August 2025
College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, Qingdao 266071, China.
Bacterial infection in the injured skin may threaten the wound repair and skin regeneration owing to aggravated inflammation. The multifunctional dressings with persistent antibacterial activity and improved anti-inflammatory capability are urgently required. Herein, a type of heterogeneous zinc/catechol-derived resin microspheres (Zn/CFRs) composed of zinc ions (Zn) and zinc oxide (ZnO) nanoparticles was developed to impart the methacrylamide chitosan (CSMA)-oxidized hyaluronic acid (OHA) hydrogel with a persistent Zn release behavior.
View Article and Find Full Text PDFInt J Pharm X
June 2025
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
Ultra-sensitive pH-responsive drug delivery system designed to operate within the slightly acidic microenvironment of tumors are highly desired for hydrogel applications in cancer therapy. In this study, 4-Formylbenzoic acid modified polyvinyl alcohol (PVA-FBA, PF) was synthesized and utilized as a carrier for encapsulating the anticancer drug Doxorubicin (Dox). This was subsequently crosslinked with polyethylenimine (PEI) via benzoic-imine bond to form drug-loaded PVA-FBA/PEI hydrogel (D-PFP).
View Article and Find Full Text PDFiScience
September 2025
Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Biomaterials for Oral Disease, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China.
This study highlights the biomedical relevance of injectable TS (tannic acid-silk fibroin)-Mg/Sr hydrogels in alveolar bone repair, particularly their prospective role as carriers for stem cells from the apical papilla (SCAPs) in tissue regeneration. By utilizing self-assembling silk material, noted for its favorable handling properties, we present a useful approach for single-wall bone defects, such as bone fenestration and fractures in the oral cavity. Furthermore, our findings regarding the involvement of the TRPM7 ion channel indicate a possible regulatory pathway for improving alveolar bone defect repair.
View Article and Find Full Text PDFMater Today Bio
October 2025
University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska Ulica 8, SI-2000, Maribor, Slovenia.
Catheter associated urinary tract infection (CAUTI) is the most frequent healthcare associated infection, arising from microbial adhesion to catheter surfaces, biofilm development, and the growing problem of antimicrobial resistance. Many publications have addressed CAUTI epidemiology, biofilm biology, or biomaterials for catheters in isolation, yet there is little literature that connects these areas into a coherent translational perspective. This review seeks to fill that gap by combining an overview of biofilm pathophysiology with recent advances in material based innovations for catheter design, including nanostructured and responsive coatings, sensor enabled systems, additive manufacturing, and three dimensional printing.
View Article and Find Full Text PDFMater Today Bio
October 2025
Leibniz Institute of Polymer Research Dresden, Division Polymer Biomaterials Science, Max Bergmann Center of Biomaterials Dresden, 01069, Dresden, Germany.
Glycosaminoglycan-based biohybrid hydrogels represent a powerful class of cell-instructive materials with proven potential in tissue engineering and regenerative medicine. Their biomedical functionality relies on a nanoscale polymer network that standard microscopy techniques cannot resolve. Here, we introduce an advanced analytical approach that integrates transmission electron microscopy, X-ray scattering, and computer simulations to directly and quantitatively characterize the nanoscale molecular network structure of these hydrogels.
View Article and Find Full Text PDF