98%
921
2 minutes
20
In recent years, orexin (ORX) and melanin-concentrating hormone (MCH) have been demonstrated to exert neuroprotective roles in cerebral ischemia. Hence, this study investigated the regulatory function of ORX and MCH in neurological function following ischemic stroke and explored the molecular mechanism underlying these functions. A rat model of ischemic stroke was developed by middle cerebral artery occlusion (MCAO), and Longa scoring was employed to evaluate the degree of neurological function deficit. The expression patterns of ORX and MCH were examined by real-time polymerase chain reaction in the brain tissues of rats with ischemic stroke induced by middle cerebral artery occlusion (MCAO). Moreover, electroencephalography (EEG) analysis and high-performance liquid chromatography (HPLC) were respectively performed to detect rapid-eye movement (REM) sleep, the glutamate (Glu) uptake, and the expression of γ-aminobutyric acid B receptor (GABA). Immunoblotting was performed to test the levels of autophagic markers LC3, BECLIN-1, and p62. Immunohistochemistry (IHC) staining and TUNEL assays were respectively used to assess the autophagy and neuronal apoptosis. Results demonstrated that ORX and MCH were lowly expressed in brain of rats with ischemic stroke. ORX or MCH overexpression decreased neuronal apoptosis and autophagy, and improved the sleep architecture of post-stroke rats, while rescuing Glu uptake and GABA expression. ORX or MCH upregulation exerted protective effects on neurological function. Taken together, ORX and/or MCH protect against ischemic stroke in a rat model, highlighting their value as targets for the clinical treatment of ischemic stroke.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12640-021-00457-4 | DOI Listing |
Mol Biol Rep
September 2025
Behbahan Faculty of Medical Sciences, Behbahan, Iran.
Transl Stroke Res
September 2025
Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
Recent studies have shown that the glymphatic system plays a crucial role in driving hyperacute edema after ischemic stroke. This has sparked interest in understanding how this system changes in later phases of ischemic stroke. In this study, we utilized cisternal contrast-enhanced magnetic resonance imaging (CE-MRI) and immunofluorescence staining to investigate glymphatic system alterations at subacute and chronic phases of ischemic stroke.
View Article and Find Full Text PDFQual Life Res
September 2025
Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600077, India.
Acta Neurochir (Wien)
September 2025
Department of Neurosurgery, Medical University of Gdańsk, Gdańsk, Poland.
Purpose: Moyamoya disease (MMD) is a chronic cerebrovascular disorder characterized by progressive arterial stenosis and fragile collateral formation, elevating stroke risk. Revascularization is the standard treatment, yet up to 27% of patients experience ischemic events within a year due to bypass insufficiency. While digital subtraction angiography (DSA) remains the gold standard for assessing bypass function, it is invasive and time-consuming.
View Article and Find Full Text PDFFunct Integr Genomics
September 2025
The First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China.
Ischemic stroke (IS) has high morbidity/mortality with limited treatments. This study screened core copper homeostasis-related genes in IS and validated their function as precise intervention targets. Human IS gene chip data were retrieved from GEO, and copper homeostasis genes from multiple databases.
View Article and Find Full Text PDF