Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phosphoinositides are a family of membrane lipids essential for many biological and pathological processes. Due to the existence of multiple phosphoinositide regioisomers and their low intracellular concentrations, profiling these lipids and linking a specific acyl variant to a change in biological state have been difficult. To enable the comprehensive analysis of phosphoinositide phosphorylation status and acyl chain identity, we develop PRMC-MS (Phosphoinositide Regioisomer Measurement by Chiral column chromatography and Mass Spectrometry). Using this method, we reveal a severe skewing in acyl chains in phosphoinositides in Pten-deficient prostate cancer tissues, extracellular mobilization of phosphoinositides upon expression of oncogenic PIK3CA, and a unique profile for exosomal phosphoinositides. Thus, our approach allows characterizing the dynamics of phosphoinositide acyl variants in intracellular and extracellular milieus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749000PMC
http://dx.doi.org/10.1038/s41467-021-27648-zDOI Listing

Publication Analysis

Top Keywords

phosphoinositide regioisomers
8
phosphoinositide
5
mass spectrometric
4
spectrometric method
4
method in-depth
4
in-depth profiling
4
profiling phosphoinositide
4
regioisomers disease-associated
4
disease-associated regulation
4
phosphoinositides
4

Similar Publications

Phosphoinositide species, differing in phosphorylation at hydroxyls of the inositol head group, play roles in various cellular events. Despite the importance of phosphoinositides, simultaneous quantification of individual phosphoinositide species is difficult using conventional methods. Here we developed a supercritical fluid chromatography-mass spectrometry method that can quantify the molecular species of all seven phosphoinositide regioisomers.

View Article and Find Full Text PDF

Phosphoinositides are a family of membrane lipids essential for many biological and pathological processes. Due to the existence of multiple phosphoinositide regioisomers and their low intracellular concentrations, profiling these lipids and linking a specific acyl variant to a change in biological state have been difficult. To enable the comprehensive analysis of phosphoinositide phosphorylation status and acyl chain identity, we develop PRMC-MS (Phosphoinositide Regioisomer Measurement by Chiral column chromatography and Mass Spectrometry).

View Article and Find Full Text PDF

Phosphoinositides (PIPx) play central roles in membrane dynamics and signal transduction of key functions like cellular growth, proliferation, differentiation, migration, and adhesion. They are highly regulated through a network of distinct phosphatidylinositol phosphates consisting of seven groups and three regioisomers in two groups (PIP and PIP2), which arise from phosphorylation at 3', 4', and 5' positions of the inositol ring. Numerous studies have revealed the importance of both fatty acyl chains, degree of phosphorylation, and phosphorylation positions under physiological and pathological states.

View Article and Find Full Text PDF

Charge inversion of phospholipids by dimetal complexes for positive ion-mode electrospray ionization mass spectrometry analysis.

Anal Chem

September 2015

Department of Biochemistry and Molecular Biology, ‡Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark.

Phospholipids are vital constituents of living cells, as they are involved in signaling and membrane formation. Mass spectrometry analysis of many phospholipids is preferentially performed in the negative ion-mode because of their acidic nature. Here we have studied the potential of a digallium and dizinc complex to charge-invert a range of different types of phospholipids and measured their ion yield and fragmentation behavior in positive ion-mode tandem mass spectrometry.

View Article and Find Full Text PDF

The diphosphoinositol polyphosphates (PP-IPs) represent a novel class of high-energy phosphate-containing messengers which control a wide variety of cellular processes. It is thought that PP-IPs exert their pleiotropic effects as allosteric regulators and through pyrophosphorylation of protein substrates. However, most details of PP-IP signaling have remained elusive because of a paucity of suitable tools.

View Article and Find Full Text PDF