98%
921
2 minutes
20
Several lines of research are being investigated to better understand mechanisms implicated in response or resistance to immune checkpoint blockade in prostate cancer (PCa). Myeloid-derived suppressor cells (MDSCs) have emerged as a major mediator of immunosuppression in the tumor microenvironment that promotes progression of various tumor types. The main mechanisms underlying MDSC-induced immunosuppression are currently being explored and strategies to enhance anti-tumor immune response via MDSC targeting are being tested. However, the role of MDSCs in PCa remains elusive. In this review, we aim to summarize and present the state-of-the-art knowledge on current methodologies to phenotypically and metabolically characterize MDSCs in PCa. We describe how these characteristics may be linked with MDSC function and may influence the clinical outcomes of patients with PCa. Finally, we briefly discuss emerging strategies being employed to therapeutically target MDSCs and potentiate the long-overdue improvement in the efficacy of immunotherapy in patients with PCa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8750906 | PMC |
http://dx.doi.org/10.3390/cells11010020 | DOI Listing |
Medicine (Baltimore)
September 2025
Department of Geriatrics, Beijing Haidian Hospital, Beijing, China.
The causal relationship between immune cell signatures and multiple myeloma (MM) pathobiology remains incompletely understood. This study aimed to explore the bidirectional causal associations between 731 circulating immune cell traits and MM risk using a two-sample, bidirectional Mendelian randomization (MR) approach. Two-sample MR analyses were conducted utilizing genome-wide association study (GWAS) summary statistics for 731 immune cell phenotypes and MM GWAS datasets.
View Article and Find Full Text PDFOncol Res
September 2025
Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
Hepatocellular carcinoma (HCC) is a highly aggressive malignancy, largely driven by an immunosuppressive tumor microenvironment (TME) that facilitates tumor growth, immune escape, and resistance to therapy. Although immunotherapy-particularly immune checkpoint inhibitors (ICIs)-has transformed the therapeutic landscape by restoring T cell-mediated anti-tumor responses, their clinical benefit as monotherapy remains suboptimal. This limitation is primarily attributed to immunosuppressive components within the TME, including tumor-associated macrophages, regulatory T cells (Tregs), and myeloid-derived suppressor cells (MDSCs).
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
Background: Immune checkpoint inhibitors (ICIs) are a cornerstone of systemic therapy for clear cell renal cell carcinoma (ccRCC), yet response rates remain variable and predictive biomarkers are lacking. This study aimed to determine whether baseline levels of myeloid-derived suppressor cells (MDSCs), especially monocytic (M-MDSC) and polymorphonuclear (PMN-MDSC) subtypes, could predict ICI response in ccRCC patients.
Methods: In this prospective cohort study, 20 ccRCC patients receiving ICI-based therapy for at least 3 months were enrolled.
Front Cell Dev Biol
August 2025
Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
Background: Lactate has been shown to play an important immunosuppressive role in the tumor microenvironment (TME) and promote tumor progression through a variety of different mechanisms of action. Myeloid-derived suppressor cells (MDSCs) are important cells that play an immunosuppressive role in the TME. However, the underlying mechanism by which lactate regulates MDSCs remains unclear.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Pathology, First Clinical College, Changzhi Medical College, Changzhi 046000.
Objectives: Acute lung injury (ALI) is an acute respiratory failure syndrome characterized by impaired gas exchange. Due to the lack of effective targeted drugs, it is associated with high mortality and poor prognosis. (TW) has demonstrated anti-inflammatory activity in the treatment of various diseases.
View Article and Find Full Text PDF