98%
921
2 minutes
20
Protection against pathogens using personal protective equipment is essential yet challenging in healthcare settings. Concerns over emerging biothreats and outbreaks of infectious diseases underscore the need for antimicrobial and biocompatible protective clothing to protect patients and staff. Herein, we report the antimicrobial efficacy and cytotoxicity of cotton/silk fabrics containing embedded reduced graphene oxide (RGO) and Ag/Cu nanoparticles (NPs), prepared using a 3-glycidyloxypropyl trimethoxy silane coupling agent followed by chemical reduction and vacuum heat treatment. Embedding NPs on top of the RGO layer substantially increased the antimicrobial activity. All RGO-Ag NPs or RGO-Cu NPs embedded in cotton or silk fabrics reduced the viability of approximately 99% of the Gram-negative bacteria and . RGO-Ag NPs embedded into cotton or silk fabrics reduced the viability of the Gram-positive bacterium by 78-99%, which was higher than the growth inhibition by RGO-Cu NPs samples against . Both silk and cotton containing RGO-Cu NPs produced a greater reduction in the viability of the yeast compared to RGO-Ag NPs fabrics. All RGO-Ag NPs or RGO-Cu NPs embedded in cotton or silk fabrics showed good washing durability by sustaining good bactericidal activity, even on washing up to 10 times. Moreover, none of the RGO-Ag or RGO-Cu fabrics reduced mammalian cells' (HEK293) viability by >30%, suggesting low cytotoxicity and good biocompatibility. These findings show that RGO-NPs embedded in cotton or silk fabrics have great potential for use in protective clothing and medical textiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.1c00508 | DOI Listing |
Anal Methods
August 2025
Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, 416004, India.
The development of high-performance electrochemical sensors is vital for the accurate and sensitive detection of neurochemicals such as dopamine (DA), a critical biomarker for neurological disorders. In this study, we report the fabrication of a novel ternary nanocomposite (MRA-10), composed of MnO nanosheets (NSs), silver nanoparticles (Ag NPs), and reduced graphene oxide (rGO). The nanocomposite was synthesized a hydrothermal process followed by sonochemical integration and applied as a sensing layer on a glassy carbon electrode (GCE).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2025
Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China. Electronic a
Silver ions (Ag) released from silver nanoparticles (Ag NPs) can help to improve the inhibition and killing ability of particles to bacteria. The leakage of Ag ions released from Ag NPs will lead to possible risks in cytotoxicity and environmental damage. It is still a challenge to balance particles' ions release and leakage to environment.
View Article and Find Full Text PDFJ Environ Manage
November 2024
Department of Physics, Masjed-Soleiman Branch, Islamic Azad University, Masjed-Soleiman, Iran; Nano Research Group, Masjed-Soleiman Branch, Islamic Azad University, Masjed-Soleiman, Iran. Electronic address:
Sci Total Environ
June 2024
Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA 5095, Australia. Electronic address:
Mining activities can potentially release high levels of Pb(II) in acid mine drainage (AMD), which thereafter poses a significant threat to ecological security. In this study, green reduced graphene oxide/silver nanoparticles (rGO/Ag NPs) were successfully synthesized via a one-step approach using a green tea extract and subsequently used as a cost-effective absorbent to remove Pb(II) from AMD. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy indicated that organic functional groups in the green tea extracts, such as C=O-C, CO, and CC, acted both as reductants and stabilizers in the synthesis of rGO/Ag NPs.
View Article and Find Full Text PDFNanomedicine (Lond)
September 2023
Department of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK.
This study aimed to investigate the potential of ternary nanocomposite (TNC) to support MG63 osteoblast maturation to EB1089-(3S)1-fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP) cotreatment. Binary (P25/reduced graphene oxide [rGO]) nanocomposite was prepared, and silver (Ag) nanoparticles were loaded onto the surface to form TNC (P25/rGO/Ag). The influence of TNC on proliferation, alkaline phosphatase activity and osteogenic gene expression was evaluated in a model of osteoblast maturation wherein MG63 were costimulated with EB1089 and FHBP.
View Article and Find Full Text PDF