Array of individually addressable two-electrode electrochemical cells sharing a single counter/reference electrode for multiplexed enzyme activity measurements.

Biosens Bioelectron

Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Campus UAB, Bellaterra, 08193, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034, Barcelona, Spain. Electronic address:

Published: April 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This work reports on the fabrication and performance of a new on-chip array of gold thin-film electrodes arranged into five individually addressable miniaturized electrochemical cells. Each cell shows a two-electrode configuration comprising a single working electrode and a counter/pseudo-reference electrode that is compartmentalized to be shared among all the cells of the array. Using this configuration, just six contact pads are required, which significantly reduces the chip overall surface area. Electrochemical characterization studies are carried out in solutions containing the two species of reversible redox pairs. The concentration of one redox species can reliably be measured at the working electrode by applying potentiostatic techniques to record the current due to the corresponding electrochemical reaction. The redox counterpart in turn undergoes an electrochemical process at the counter/pseudo-reference electrode, which, under optimized experimental conditions, injects current and keeps the applied potential in the electrochemical cell without limiting the current being recorded at the working electrode. Under these conditions, the electrode array shows an excellent performance in electrochemical detection studies without any chemical or electrical cross-talk between cells. The enzymatic activity of horseradish peroxidase, alkaline phosphatase and myeloperoxidase enzymes is analyzed using different redox mediators. Quasi-simultaneous measurements with the five electrochemical cells of the array are carried out within 1 s time frame. This array layout can be suitable for multiplexed electrochemical immunoassays and immunosensor approaches and implementation in simplified electrochemical ELISA platforms that make use of enzyme labels. Moreover, the array reduced dimensions facilitate the integration into compact fluidic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2021.113952DOI Listing

Publication Analysis

Top Keywords

electrochemical cells
12
working electrode
12
electrochemical
10
individually addressable
8
counter/pseudo-reference electrode
8
cells array
8
array
7
electrode
7
cells
5
array individually
4

Similar Publications

3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices-specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers-which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components.

View Article and Find Full Text PDF

The development of innovative bioprocessing technologies has resulted from the growing global need for sustainable forms of energy and environmentally friendly waste treatment. In this review, we focus on the combined electro-fermentation and microbial fuel cells, as they form a hybrid system that simultaneously addresses wastewater treatment, bioenergy production, and bioplastics. Even though microbial fuel cells produce electricity out of the organic waste by the use of electroactive microorganisms, electro-fermentation improves the microbial pathways through the external electrochemical management.

View Article and Find Full Text PDF

Microbial desalination cells (MDCs) have traditionally employed simplified NaCl solutions as feedwater for synchronous desalination and bioenergy recovery. Nevertheless, the specific mechanisms by which MDCs remove complex multi-ions from saline wastewater remain obscure. This study thoroughly investigated ion migration, bioelectrochemical dynamics, and microbial ecological responses across three distinct configurations: monovalent ions - PMDC, divalent cations - CMDC and anions - AMDC.

View Article and Find Full Text PDF

Amorphous MoS Derived from (NH)MoS: Structural Insights and Applications in All-Solid-State Batteries.

Inorg Chem

September 2025

Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-853, Japan.

Amorphous molybdenum polysulfides (a-MoS) have attracted considerable attention because of their unique physical and chemical properties, which enable their use in a wide range of applications including energy-storage materials. Among various synthesis methods, thermal decomposition provides an effective route for synthesizing a-MoS. In particular, amorphous molybdenum trisulfide (a-MoS) prepared via thermal decomposition has emerged as a promising active material for energy-storage applications owing to its unique structural and electrochemical characteristics.

View Article and Find Full Text PDF

LiNiMnO (LNMO) is a promising material for the cathode of lithium-ion batteries (LiBs); however, its high operating voltage causes stability issues when used with carbonate battery electrolytes. Ionic liquids are a viable alternative to conventional carbonate solvents due to their thermal stability and electrochemical window. This work reports the performance of LNMO/Li half cells with an ionic liquid electrolyte (ILE) composed of 0.

View Article and Find Full Text PDF