Construction of a highly selective and sensitive carbohydrate-detecting biosensor utilizing Computational Identification of Non-disruptive Conjugation sites (CINC) for flexible and streamlined biosensor design.

Biosens Bioelectron

Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada; Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada. Electronic address: hans-joachi

Published: March 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fluorescently-labeled solute-binding proteins that alter their fluorescence output in response to ligand binding have been utilized as biosensors for a variety of applications. Coupling protein ligand binding to altered fluorescence output often requires trial and error-based testing of both multiple labeling positions and fluorophores to produce a functional biosensor with the desired properties. This approach is laborious and can lead to reduced ligand binding affinity or altered ligand specificity. Here we report the Computational Identification of Non-disruptive Conjugation sites (CINC) for streamlined identification of fluorophore conjugation sites. By exploiting the structural dynamics properties of proteins, CINC identifies positions where conjugation of a fluorophore results in a fluorescence change upon ligand binding without disrupting protein function. We show that a CINC-developed maltooligosaccharide (MOS)-detecting biosensor is capable of rapid (k = 20 μMs), sensitive (sub-μM K) and selective MOS detection. The MOS-detecting biosensor is modular with respect to the spectroscopic properties and demonstrates portability to detecting MOS released via α-amylase-catalyzed depolymerization of starch using both a stopped-flow and a microplate reader assay. Our MOS-detecting biosensor represents a first-in-class probe whose design was guided by changes in localized dynamics of individual amino acid positions, supporting expansion of the CINC pipeline as an indispensable tool for a wide range of protein engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2021.113899DOI Listing

Publication Analysis

Top Keywords

ligand binding
16
conjugation sites
12
mos-detecting biosensor
12
computational identification
8
identification non-disruptive
8
non-disruptive conjugation
8
sites cinc
8
fluorescence output
8
biosensor
6
ligand
5

Similar Publications

Cyclin-dependent kinase 20 (CDK20), also known as cell cycle-related kinase (CCRK), plays a pivotal role in hepatocellular carcinoma (HCC) progression by regulating β-catenin signaling and promoting uncontrolled proliferation. Despite its emerging significance, selective small-molecule inhibitors of CDK20 remain unexplored. In this study, a known CDK20 inhibitor, ISM042-2-048, was employed as a reference to retrieve structurally similar compounds from the PubChem database using an 85% similarity threshold.

View Article and Find Full Text PDF

Background: The dysregulation of long-chain noncoding RNAs (lncRNAs) causes several complex human diseases including neurodegenerative disorders across the globe.

Methods And Results: This study aimed to investigate lncRNA expression profiles of Withania somnifera (WS)-treated human neuroblastoma SK-N-SH cells at different timepoints (3 & 9 h) and concentrations (50 & 100 µg/mL) using RNA sequencing. Differential gene expression analysis showed a total of 4772 differentially expressed lncRNAs, out of which 3971 were upregulated and 801 were downregulated compared to controls.

View Article and Find Full Text PDF

The microglial surface protein Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) plays a critical role in mediating brain homeostasis and inflammatory responses in Alzheimer's disease (AD). The soluble form of TREM2 (sTREM2) exhibits neuroprotective effects in AD, though the underlying mechanisms remain elusive. Moreover, differences in ligand binding between TREM2 and sTREM2, which have major implications for their roles in AD pathology, remain unexplained.

View Article and Find Full Text PDF

Introduction: Mutations in SORL1, encoding the sorting receptor Sortilin-related receptor with A-type repeats (SORLA), are found in individuals with Alzheimer's disease (AD). We studied SORLA, carrying a mutation in its ligand binding domain, to learn more about receptor functions relevant for human brain health.

Methods: We investigated consequences of SORLA expression in induced pluripotent stem cell (iPSC)-derived human neurons and microglia, using unbiased proteome screens and functional cell assays.

View Article and Find Full Text PDF

Integrative profiling of lung cancer biomarkers EGFR, ALK, KRAS, and PD-1 with emphasis on nanomaterials-assisted immunomodulation and targeted therapy.

Front Immunol

September 2025

Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.

Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.

Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.

View Article and Find Full Text PDF