A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Targeting drug delivery and efficient lysosomal escape for chemo-photodynamic cancer therapy by a peptide/DNA nanocomplex. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A peptide/DNA nanocomplex was developed for the targeted delivery of chemotherapeutics and photosensitizers to cancer cells for efficient combination therapy. The chemotherapeutic drug doxorubicin (DOX) and the photosensitizer 5,10,15,20-tetra-(1-methylpyridine-4-yl)-porphyrin (TMPyP4) were physically incorporated by an aptamer (AS1411)-modified tetrahedral DNA nanostructure, where the tetrahedral DNA and aptamer-induced G-quadruplex provide binding sites of DOX and TMPyP4. The co-loaded 3A-TDN/DT displayed a targeted uptake by HeLa cancer cells through the high affinity and specificity between AS1411 and nucleolin, a protein overexpressed on many types of cancer cells. A polycationic polymer, mPEG-PAsp(TECH), was synthesized to complex with the DNA nanostructure to efficiently escape from lysosomes the proton sponge effect upon the enhanced internalization by tumor cells. Under the irradiation of 660 nm laser light, TMPyP4 induced an upregulation of intracellular reactive oxygen species, which combined with DOX to fulfill the efficient inhibition of HeLa cells. Our study demonstrated a biocompatible peptide/DNA composite nanoplatform for combinational cancer therapy the targeted delivery of therapeutic agents and efficient lysosomal escape.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1tb02441hDOI Listing

Publication Analysis

Top Keywords

cancer cells
12
efficient lysosomal
8
lysosomal escape
8
cancer therapy
8
peptide/dna nanocomplex
8
targeted delivery
8
tetrahedral dna
8
dna nanostructure
8
cancer
5
cells
5

Similar Publications