Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Low temperature microfiltration (MF) is applied in dairy processing to achieve higher protein and microbiological quality ingredients and to support ingredient innovation; however, low temperature reduces hydrophobic interactions between casein proteins and increases the solubility of colloidal calcium phosphate, promoting reversible dissociation of micellar β-casein into the serum phase, and thus into permeate, during MF. Crosslinking of casein proteins using transglutaminase was studied as an approach to reduce the permeation of casein monomers, which typically results in reduced yield of protein in the retentate fraction. Two treatments (a) 5 °C/24 h (TA) and (b) 40 °C/90 min (TB), were applied to the feed before filtration at 5 °C, with a 0.1 µm membrane. Flux was high for TA treatment possibly due to the stabilising effect of transglutaminase on casein micelles. It is likely that formation of isopeptide bonds within and on the surface of micelles results in the micelles being less readily available for protein-protein and protein-membrane interactions, resulting in less resistance to membrane pores and flow passage, thereby conferring higher permeate flux. The results also showed that permeation of casein monomers into the permeate was significantly reduced after both enzymatic treatments as compared to control feed due to the reduced molecular mobility of soluble casein, mainly β-casein, caused by transglutaminase crosslinking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8701848PMC
http://dx.doi.org/10.3390/foods10123146DOI Listing

Publication Analysis

Top Keywords

low temperature
12
transglutaminase crosslinking
8
crosslinking casein
8
temperature microfiltration
8
casein proteins
8
permeation casein
8
casein monomers
8
casein
7
influence transglutaminase
4
casein protein
4

Similar Publications

HO and CO Sorption in Ion-Exchange Sorbents: Distinct Interactions in Amine Versus Quaternary Ammonium Materials.

ACS Appl Mater Interfaces

September 2025

The Steve Sanghi College of Engineering, Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona 86011, United States.

This study investigates the HO and CO sorption behavior of two chemically distinct polystyrene-divinylbenzene-based ion exchange sorbents: a primary amine and a permanently charged strong base quaternary ammonium (QA) group with (bi)carbonate counter anions. We compare their distinct interactions with HO and CO through simultaneous thermal gravimetric, calorimetric, gas analysis, and molecular modeling approaches to evaluate their performance for dilute CO separations like direct air capture. Thermal and hybrid (heat + low-temperature hydration) desorption experiments demonstrate that the QA-based sorbent binds both water and CO more strongly than the amine counterparts but undergoes degradation at moderate temperatures, limiting its compatibility with thermal swing regeneration.

View Article and Find Full Text PDF

Tires are complex polymeric materials composed of rubber elastomers (both natural and synthetic), fillers, steel wire, textiles, and a range of antioxidant and curing systems. These constituents are distributed differently among the various tire parts, which are classified based on their function and proximity to the rim. This study presents a rapid and sensitive approach for the characterization of tire components using mild thermal desorption/pyrolysis (TDPy) coupled to direct analysis in real-time mass spectrometry (DART-MS).

View Article and Find Full Text PDF

Photofunctionalization of Light Alkanes by FeO/BCN at 12 °C.

J Am Chem Soc

September 2025

State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.

The activation of methane and other gaseous hydrocarbons at low temperature remains a substantial challenge for the chemistry community. Here, we report an anaerobic photosystem based on crystalline borocarbonitride (BCN) supported Fe-O nanoclusters, which can selectively functionalize C-H bonds of methane, ethane, and higher alkanes to value-added organic chemicals at 12 °C. Scanning transmission electron microscopy and X-ray absorption spectroscopy corroborated the ultrafine FeOOH and FeO species in Fe-O clusters, which enhanced the interfacial charge transfer/separation of BCN as well as the chemisorption of methane.

View Article and Find Full Text PDF

Unlocking Nano-CSH and Silica Fume to Enhance the Performance of Alkali-Free Liquid Accelerators in Low-Temperature Environments.

Langmuir

September 2025

State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing 100041, China.

This article is based on the research background of an early performance of shotcrete under low-temperature environments. Silica fume (SF) (silicon powder) and nano-CSH are used to improve the effect of the low-temperature environment on the performance of alkali-free (AF) liquid accelerators and early strength of shotcrete. The results show that the 10% SF and 3% nano-CSH composite admixture significantly enhances AF accelerators' performance at 5 °C, reducing initial and final setting times to 3.

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF