Spatial and temporal patterns of white spot disease in Rayong Province, Thailand, from october 2015 to september 2018.

Prev Vet Med

Section of Epidemiology, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand. Electronic address:

Published: February 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aimed to analyze the spatial and temporal patterns of white spot disease (WSD) in shrimp farms in Rayong Province, Thailand, between October 2015 and September 2018. The longitudinal data of all active shrimp farms were collected and categorized into two groups: cases and non-cases. A space-time permutation scan, epidemic curve, and time-series analysis were used to evaluate the spatiotemporal patterns. We assessed a total of 1126 ponds across 176 farms in two districts (Klaeng and Mueang Rayong) and identified three significant (P < 0.05) clusters of WSD cases. The biggest cluster encompassed 21 geographical coordinates. This cluster had a radius of 1.14 km and occurred between January 31, 2017, and February 28, 2017. The epidemic curve showed that the biggest outbreak peaked from December 2017 to February 2018. In the time-series analysis, the highest probability of actual WSD cases was at the beginning of each calendar year, consistent with the prominent high probability recorded in WSD forecasts. Our analysis presents the interaction between hotspot areas and time period. These results should help the relevant authorities implement appropriate surveillance programs and control measures to limit the occurrence and transmission of WSD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prevetmed.2021.105560DOI Listing

Publication Analysis

Top Keywords

spatial temporal
8
temporal patterns
8
patterns white
8
white spot
8
spot disease
8
rayong province
8
province thailand
8
thailand october
8
october 2015
8
2015 september
8

Similar Publications

Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.

View Article and Find Full Text PDF

Understanding the intricate relationship between land use/land cover (LULC) transformations and land surface temperature (LST) is critical for sustainable urban planning. This study investigates the spatiotemporal dynamics of LULC and LST across Delhi, India, using thermal data from Landsat 7 (2001), Landsat 5 (2011) and Landsat 8 (2021) resampled to 30-m spatial resolution, during the peak summer month of May. The study aims to target three significant aspects: (i) to analyse and present LULC-LST dynamics across Delhi, (ii) to evaluate the implications of LST effects at the district level and (iii) to predict seasonal LST trends in 2041 for North Delhi district using the seasonal auto-regressive integrated moving average (SARIMA) time series model.

View Article and Find Full Text PDF

Individual alpha frequency tACS modifies the detection of space-time optical illusion.

Exp Brain Res

September 2025

Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy.

Postdiction is a perceptual phenomenon where the perception of an earlier stimulus is influenced by a later one. This effect is commonly studied using the 'rabbit illusion', in which temporally regular, but spatially irregular, stimuli are perceived as equidistant. While previous research has focused on short inter-stimulus intervals (100-200 ms), the role of longer intervals, which may engage late attentional processes, remains unexplored.

View Article and Find Full Text PDF

The human kidneys play a pivotal role in regulating blood pressure, water, and salt homeostasis, but assessment of renal function typically requires invasive methods. Deuterium metabolic imaging (DMI) is a novel, noninvasive technique for mapping tissue-specific uptake and metabolism of deuterium-labeled tracers. This study evaluates the feasibility of renal DMI at 7-Tesla (7T) to track deuterium-labeled tracers with high spatial and temporal resolution, aiming to establish a foundation for potential clinical applications in the noninvasive investigation of renal physiology and pathophysiology.

View Article and Find Full Text PDF

Toward Rational Electrocatalyst Design: Dynamic Insights from Liquid Environmental Transmission Electron Microscopy.

Adv Mater

September 2025

Center of Electron Microscopy, State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang Key Laboratory of Low-Carbon Synthesis of Value-Added Chemicals, Zhejiang University, Hangzhou, 310027, China.

Electrocatalysis, a pivotal field at the intersection of physical chemistry and materials science, plays a crucial role in advancing energy conversion and storage technologies through rational catalyst design. However, understanding reaction mechanisms at the atomic level remains a great challenge due to the intricate interplay between catalysts, reactants, and complex environments (e.g.

View Article and Find Full Text PDF