98%
921
2 minutes
20
Both natural and anthropogenic stressors are increasing on coral reefs, resulting in large-scale loss of coral and potential shifts from coral- to macroalgae-dominated community states. Two factors implicated in shifts to macroalgae are nutrient enrichment and fishing of reef herbivores. Although either of these factors alone could facilitate establishment of macroalgae, reefs may be particularly vulnerable to coral-to-algae phase shifts in which strong bottom-up forcing from nutrient enrichment is accompanied by a weakening of herbivore control of macroalgae via intense fishing. We explored spatial heterogeneity and covariance in these drivers on reefs in the lagoons of Moorea, French Polynesia, where the local fishery heavily targets herbivorous fishes and there are spatially variable inputs of nutrients from agricultural fertilizers and wastewater systems. Spatial patterns of fishing and nutrient enrichment were not correlated at the two landscape scales we examined: among the 11 interconnected lagoons around the island or among major habitats (fringing reef, mid-lagoon, back reef) within a lagoon. This decoupling at the landscape scale resulted from patterns of covariation between enrichment and fishing that differed qualitatively between cross-shore and long-shore directions. At the cross-shore scale, nutrient enrichment declined but fishing increased from shore to the crest of the barrier reef. By contrast, nutrient enrichment and fishing were positively correlated in the long-shore direction, with both increasing with proximity to a pass in the barrier reef. Contrary to widespread assumptions in the scientific literature that human coastal population density correlates with impact on marine ecosystems and that fishing effort declines linearly with distance from the shore, these local stressors produced a complex spatial mosaic of reef vulnerabilities. Our findings support spatially explicit management involving the control of anthropogenic nutrients and strategic reductions in fishing pressure on herbivores by highlighting specific areas to target for management actions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285716 | PMC |
http://dx.doi.org/10.1002/eap.2515 | DOI Listing |
mSystems
September 2025
Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas, USA.
is a human fungal pathogen that survives and proliferates within phagocytic immune cells. To sustain growth in the nutrient-limited phagosome environment, the pathogenic yeast scavenges available carbon sources, which must be metabolized through central carbon metabolism for respiration and biomass synthesis. However, carbon metabolic pathways operating in the pathogenic yeast phase have not been extensively mapped.
View Article and Find Full Text PDFFood Chem X
August 2025
College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China.
Colored highland barley is a promising nutrient-rich functional food. However, antioxidant capacity after fermentation and the quality of the resulting wine remain unexplored. This study investigated how the accumulation of non-volatile metabolites in four fermented colored highland barley varieties influences antioxidant capacity and wine quality.
View Article and Find Full Text PDFJ Neurogenet
September 2025
Neurosciences Graduate Program, UC San Diego, La Jolla, CA, USA.
All metazoan guts harbor commensal communities, from a dozen bacterial species in to hundreds in humans. Here, we condition flies with diets containing varying levels of protein and sugar to investigate the impact of dietary history on the interaction between commensal gut bacteria and feeding adaptation in . We find that appetite increases with dietary protein, dependent on total gut bacteria content, and enhanced by a drug that promotes the growth of short-chain fatty acid (SCFA)-producing gut bacteria.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China. Electronic address:
Fomesafen (FSA), a diphenyl ether herbicide, causes toxicity to non-target organisms and subsequent crops. Vermi-remediation is advocated as an effective remediation method, but there has been no research on the isolation and mechanism of FSA-degradation strains from earthworm gut. In this study, three ecotypes of earthworms- Eisenia foetida (epigeic), Metaphire guillelmi (anecic), and Aporrectodea caliginosa (endogenic), were used to investigate the degradation mechanism of FSA in soil-plant-earthworm systems for the first time.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China. Electronic address:
Understanding the stability and assemblage of biofilm microbiomes under oligotrophic conditions is critical for improving groundwater bioremediation. In this study, a novel microbial electrochemical filter (MEF) was developed to explore the impact of weak electrical stimulation on functional adaptability of biofilms under oligotrophic and 1,4-dioxane exposure conditions. Under 20 mg/L 1,4-dioxane stress, the MEF achieved 94.
View Article and Find Full Text PDF