Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pharmacogenomic screening can identify patients with gene variants that predispose them to the development of severe toxicity from fluoropyrimidine (FP) chemotherapy. Deficiency of the critical metabolic enzyme dihydropyrimidine dehydrogenase (DPD) leads to excessive toxicity on exposure to fluoropyrimidine chemotherapy. This can result in hospitalisation, intensive care admissions and even death. Upfront screening of the gene that encodes for DPD () has recently been implemented in regions throughout Europe and the United Kingdom. Current screening evaluates variants that are well described within Caucasian patient populations and provides genotyped-guided dose adjustment recommendations based upon the presence of these variants. This article reviews the differences in gene variants within non-Caucasian populations compared to Caucasian populations, with regard to the implications for clinical tolerance of fluoropyrimidine chemotherapies and genotype guided dose adjustment guidelines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8668257PMC
http://dx.doi.org/10.2147/PGPM.S337147DOI Listing

Publication Analysis

Top Keywords

gene variants
8
fluoropyrimidine chemotherapy
8
dose adjustment
8
ethnic diversity
4
diversity dpd
4
dpd activity
4
gene
4
activity gene
4
gene review
4
review literature
4

Similar Publications

Purpose: Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) is a rare cancer susceptibility syndrome exclusively attributable to pathogenic variants in FH (HGNC:3700). This paper quantitatively weights the phenotypic context (PP4/PS4) of such very rare variants in FH.

Methods: We collated clinical diagnostic testing data on germline FH variants from 387 individuals with HLRCC and 1,780 individuals with renal cancer, and compared the frequency of 'very rare' variants in each phenotypic cohort against 562,295 population controls.

View Article and Find Full Text PDF

Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.

View Article and Find Full Text PDF

Bioinformatics analysis of a geneframeshift mutation in a patient with Dent disease.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Nephropathy and Rheumatology, Third Xiangya Hospital, Central South University, Changsha 410013.

Dent disease is a rare X-linked recessive inherited renal tubular disorder characterized by low molecular weight proteinuria (LMWP), hypercalciuria, nephrocalcinosis, and other clinical features, and can lead to progressive renal failure. It is primarily caused by mutations in the gene. This article reports the case of a 10-year-old male patient of Chinese descent who was incidentally found to have asymptomatic proteinuria during a routine health examination.

View Article and Find Full Text PDF

The GM2 gangliosidoses are lysosomal storage disorders exhibiting a spectrum of neurological phenotypes ranging from childhood death to debilitating adult-onset neurological impairment. To date, no mouse model harbouring a specific human mutation causing GM2 gangliosidosis has been created. We used CRISPR/Cas9 to generate knockin (KI) mice with the common adult-onset Hexa Gly269Ser variant as well as knockout (KO) mice with Hexa mutations expected to cause complete HexA deficiency.

View Article and Find Full Text PDF

Background: Although blood group variation was first described over a century ago, our understanding of the genetic variation affecting antigenic expression on the red blood cell surface in many populations is lacking. This deficit limits the ability to accurately type patients, especially as serological testing is not available for all described blood groups, and targeted genotyping panels may lack rare or population-specific variants.

Study Design And Methods: Here, we perform serological assays across 24 antigens and whole genome sequencing on 100 Omanis, a population underrepresented in genomic databases.

View Article and Find Full Text PDF