Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Although blood group variation was first described over a century ago, our understanding of the genetic variation affecting antigenic expression on the red blood cell surface in many populations is lacking. This deficit limits the ability to accurately type patients, especially as serological testing is not available for all described blood groups, and targeted genotyping panels may lack rare or population-specific variants.

Study Design And Methods: Here, we perform serological assays across 24 antigens and whole genome sequencing on 100 Omanis, a population underrepresented in genomic databases. We inferred blood group phenotypes using known genetic variants underlying antigen expression.

Results: Comparison of serological to genetically inferred phenotypes resulted in an average prediction accuracy of 98.7%. By investigating 12 discordances, we describe candidate variants in the Lewis, Lutheran, MNS, and P1 blood groups that could affect antigenic expression, although further functional confirmation is required. We identify blood group alleles that, to our knowledge, have not been previously reported in Omanis, including several most common in African populations, likely introduced to Oman by gene flow over the last thousand years.

Discussion: These findings highlight the need to evaluate individual populations and their population history when considering variants to include in genotype panels for blood group typing. This research will inform future genetic work in blood banks and transfusion services, ensuring that testing strategies are optimized for diverse genetic backgrounds.

Download full-text PDF

Source
http://dx.doi.org/10.1111/trf.18401DOI Listing

Publication Analysis

Top Keywords

blood group
20
genome sequencing
8
blood
8
antigenic expression
8
blood groups
8
group
5
characterization blood
4
variants
4
group variants
4
variants omani
4

Similar Publications

Introduction: Epigenetic changes are important modulators of gene expression. The histone acetyltransferase gene non-derepressible 5 (Gcn5) is emerging as a pivotal epigenetic player in metabolism and cancer, yet its role in obesity and cardiovascular disease remains elusive.

Aims: To investigate Gcn5 role in obesity-related endothelial dysfunction.

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate the prognostic significance of microvessel density (MVD), assessed by CD34 immunohistochemistry (IHC), and its correlation with radiological features and bevacizumab (BEV) treatment efficacy in newly diagnosed glioblastoma.

Methods: We retrospectively analyzed 41 patients with newly diagnosed glioblastoma. MVD was quantified using CD34 IHC, and patients were stratified into low and high MVD groups according to the cutoff value determined by receiver operating characteristic curve analysis (sensitivity, 76.

View Article and Find Full Text PDF

Objective: This study evaluated the effects and mechanisms of antioxidant and anti-inflammatory oils with a high omega-9:omega-6 ratio and a low omega-6:omega-3 ratio on post-extraction healing in rats.

Materials And Methods: A total of 128 Wistar rats were divided into four groups: Sham, Saline, Isolipidic, and Anti-inflammatory/Antioxidant. The animals received one of the following treatments: (1) 0.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) remains a leading cause of mortality and long-term disability globally, with survivors at high risk of recurrent stroke, cardiovascular events, and post-stroke dementia. Statins, while widely used for their lipid-lowering effects, also possess pleiotropic properties, including anti-inflammatory, endothelial-stabilizing, and neuroprotective actions, which may offer added benefit in AIS management. This article synthesizes emerging evidence on statins' dual mechanisms of action and evaluates their role in reducing recurrence, improving survival, and mitigating cognitive decline.

View Article and Find Full Text PDF

Introduction: Knockout of the Fmo5 gene in mice led to a lean, slow-ageing phenotype characterised by the presence of 2,3-butanediol isomers in their urine and plasma. Oral treatment of wildtype mice with 2,3-butanediol led to a low cholesterol, low epididymal fat phenotype.

Objectives: Determine if significant, heterozygous coding variations in human FMO5 would give rise to similar clinical and metabolic phenotypes in humans, as in C57BL/6J mice with knockout of the Fmo5 gene and in particular, increased excretion of 2,3-butanediol.

View Article and Find Full Text PDF