98%
921
2 minutes
20
Purpose: Branchpoint elements are required for intron removal, and variants at these elements can result in aberrant splicing. We aimed to assess the value of branchpoint annotations generated from recent large-scale studies to select branchpoint-abrogating variants, using hereditary cancer genes as model.
Methods: We identified branchpoint elements in 119 genes associated with hereditary cancer from 3 genome-wide experimentally-inferred and 2 predicted branchpoint data sets. We then identified variants that occur within branchpoint elements from public databases. We compared conservation, unique variant observations, and population frequencies at different nucleotides within branchpoint motifs. Finally, selected minigene assays were performed to assess the splicing effect of variants at branchpoint elements within mismatch repair genes.
Results: There was poor overlap between predicted and experimentally-inferred branchpoints. Our analysis of cancer genes suggested that variants at -2 nucleotide, -1 nucleotide, and branchpoint positions in experimentally-inferred canonical motifs are more likely to be clinically relevant. Minigene assay data showed the -2 nucleotide to be more important to branchpoint motif integrity but also showed fluidity in branchpoint usage.
Conclusion: Data from cancer gene analysis suggest that there are few high-risk alleles that severely impact function via branchpoint abrogation. Results of this study inform a general scheme to prioritize branchpoint motif variants for further study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gim.2021.09.020 | DOI Listing |
NPJ Genom Med
May 2025
Splicing and genetic susceptibility to cancer. Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM). Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), 47003, Valladolid, Spain.
We investigated the role of TP53 splicing regulatory elements (SREs) using exons 3 and 6 and their downstream introns as models. Minigene microdeletion assays revealed four SRE-rich intervals: c.573_598, c.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
Sesquiterpene synthases (STSs) catalyze carbocation cascade reactions with various hydrogen shifts and cyclization patterns that generate structurally diverse sesquiterpene skeletons. However, the molecular basis for hydrogen shifts and cyclizations, which determine STS product distributions, remains enigmatic. In this study, an elusive STS SydA was identified in the biosynthesis of sydonol, which synthesized a new bisabolene-type sesquiterpene with a unique saturated terminal pendant isopentane.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
All free-living microorganisms homeostatically maintain the fluidity of their membranes by adapting lipid composition to environmental temperatures. Here, we quantify enzymes and metabolic intermediates of the Escherichia coli fatty acid and phospholipid synthesis pathways, to describe how this organism measures temperature and restores optimal membrane fluidity within a single generation after a temperature shock. A first element of this regulatory system is a temperature-sensitive metabolic valve that allocates flux between the saturated and unsaturated fatty acid synthesis pathways via the branchpoint enzymes FabI and FabB.
View Article and Find Full Text PDFBiophys Chem
November 2024
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306, Punjab, India. Electronic address:
The two transesterification reactions of pre-mRNA splicing require highly complex yet well-controlled rearrangements of small nuclear RNAs and proteins (snRNP) in the spliceosome. The efficiency and accuracy of these reactions are critical for gene expression, as almost all human genes pass through pre-mRNA splicing. Key parameters that determine the splicing outcome are the length of the intron, the strengths of its splicing signals and gaps between them, and the presence of splicing controlling elements.
View Article and Find Full Text PDFBrief Bioinform
March 2024
School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China.
Language models pretrained by self-supervised learning (SSL) have been widely utilized to study protein sequences, while few models were developed for genomic sequences and were limited to single species. Due to the lack of genomes from different species, these models cannot effectively leverage evolutionary information. In this study, we have developed SpliceBERT, a language model pretrained on primary ribonucleic acids (RNA) sequences from 72 vertebrates by masked language modeling, and applied it to sequence-based modeling of RNA splicing.
View Article and Find Full Text PDF