98%
921
2 minutes
20
Ocean warming and ocean acidification (OA) are direct consequences of climate change and affect coral reefs worldwide. While the effect of ocean warming manifests itself in increased frequency and severity of coral bleaching, the effects of ocean acidification on corals are less clear. In particular, long-term effects of OA on the bacterial communities associated with corals are largely unknown. In this study, we investigated the effects of ocean acidification on the resident and active microbiome of long-term aquaria-maintained colonies by assessing 16S rRNA gene diversity on the DNA (resident community) and RNA level (active community). Coral colony fragments of were kept in aquaria for 2 years at four different CO levels ranging from current pH conditions to increased acidification scenarios (i.e., pH 7.2, 7.4, 7.8, and 8). We identified 154 bacterial families encompassing 2,047 taxa (OTUs) in the resident and 89 bacterial families including 1,659 OTUs in the active communities. Resident communities were dominated by members of Alteromonadaceae, Flavobacteriaceae, and Colwelliaceae, while active communities were dominated by families Cyclobacteriacea and Amoebophilaceae. Besides the overall differences between resident and active community composition, significant differences were seen between the control (pH 8) and the two lower pH treatments (7.2 and 7.4) in the active community, but only between pH 8 and 7.2 in the resident community. Our analyses revealed profound differences between the resident and active microbial communities, and we found that OA exerted stronger effects on the active community. Further, our results suggest that rDNA- and rRNA-based sequencing should be considered complementary tools to investigate the effects of environmental change on microbial assemblage structure and activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8656159 | PMC |
http://dx.doi.org/10.3389/fmicb.2021.707674 | DOI Listing |
Mar Environ Res
August 2025
Departamento de Biología Animal, Edafología y Geología. Facultad de Ciencias. Sección Biología. Universidad de La Laguna, Tenerife, Canary Islands, Spain.
Anthropogenic CO emissions drive ocean acidification (OA), which reduces seawater pH and carbonate ion availability, threatening calcifying organisms such as sea urchins. This study examines the long-term effects of OA on Arbacia lixula using a natural volcanic CO vent at Fuencaliente, La Palma (Canary Islands) as an analogue of future conditions. We analyzed the external morphology, skeletal strength, mineralogy, and growth of A.
View Article and Find Full Text PDFElife
September 2025
Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig Maximilians-Universität München, Munich, Germany.
The rapid emergence of mineralized structures in diverse animal groups during the late Ediacaran and early Cambrian periods likely resulted from modifications of pre-adapted biomineralization genes inherited from a common ancestor. As the oldest extant phylum with mineralized structures, sponges are key to understanding animal biomineralization. Yet, the biomineralization process in sponges, particularly in forming spicules, is not well understood.
View Article and Find Full Text PDFMar Environ Res
August 2025
Hellenic Centre for Marine Research, Institute of Oceanography, Heraklion, Greece.
Ocean acidification (OA) due to anthropogenic CO2 emissions has significantly altered ocean chemistry since the industrial era. Ocean alkalinity enhancement (OAE) is an innovative strategy to mitigate excess CO, with ocean liming (OL) serving as a potential carbon dioxide removal (CDR) method, through the spreading of Ca(OH) (slaked lime) at the ocean surface. This study examined the ecological effects of OL on a natural zooplankton community from the ultraoligotrophic Eastern Mediterranean Sea during a 14-day mesocosm experiment conducted in spring-summer.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Key Laboratory of Mariculture of Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China.
Bivalve farming, a vital component of global aquaculture, has been proposed as a potential marine carbon dioxide removal (mCDR) strategy, yet its role remains contentious. Using field mesocosms, we demonstrate that oyster filter-feeding enhances mCDR by accelerating the formation of particulate and dissolved organic carbon in the water column and promoting organic carbon deposition in sediments. This process shifts the water column toward a more autotrophic and alkaline state, effectively sequestering CO from the atmosphere.
View Article and Find Full Text PDFSci Adv
August 2025
Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA 70118, USA.
Ocean acidification poses a threat to coral skeleton formation via reductions in the saturation state of aragonite (Ω) in seawater. Given that corals precipitate their skeletons from a calcifying fluid supplied by seawater, reductions in seawater Ω should, in theory, confound calcification. Here, we reconstruct up to 200 years of coral calcifying fluid Ω, using Raman spectroscopy techniques, at approximately monthly resolution in two sp.
View Article and Find Full Text PDF