98%
921
2 minutes
20
Challenges to effective delivery of drugs following oral administration has attracted growing interest over recent decades. Small molecule drugs (<1000 Da) are generally absorbed across the gastrointestinal tract into the portal blood and further transported to the systemic circulation via the liver. This can result in a significant reduction to the oral bioavailability of drugs that are metabolically labile and ultimately lead to ineffective exposure and treatment. Targeting drug delivery to the intestinal lymphatics is attracting increased attention as an alternative route of drug transportation providing multiple benefits. These include bypassing hepatic first-pass metabolism and selectively targeting disease reservoirs residing within the lymphatic system. The particular physicochemical requirements for drugs to be able to access the lymphatics after oral delivery include high lipophilicity (logP>5) and high long-chain triglyceride solubility (> 50 mg/g), properties required to enable drug association with the lipoprotein transport pathway. The majority of small molecule drugs, however, are not this lipophilic and therefore not substantially transported via the intestinal lymph. This has contributed to a growing body of investigation into prodrug approaches to deliver drugs to the lymphatic system by chemical manipulation. Optimised lipophilic prodrugs have the potential to increase lymphatic transport thereby improving oral pharmacokinetics via a reduction in first pass metabolism and may also target of disease-specific reservoirs within the lymphatics. This may provide advantages for current pharmacotherapy approaches for a wide array of pathological conditions, e.g. immune disease, cancer and metabolic disease, and also presents a promising approach for advanced vaccination strategies. In this review, specific emphasis is placed on medicinal chemistry strategies that have been successfully employed to design lipophilic prodrugs to deliberately enable lymphatic transport. Recent progress and opportunities in medicinal chemistry and drug delivery that enable new platforms for efficacious and safe delivery of drugs are critically evaluated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2021.12.003 | DOI Listing |
Bioorg Chem
August 2025
College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea. Electronic address:
Nucleoside analogs have served as the cornerstone of antiviral therapy by acting as antimetabolites that disrupt viral DNA or RNA synthesis, thereby effectively inhibiting viral replication. Despite their clinical success, many nucleoside-based antivirals suffer from intrinsic limitations such as poor lipophilicity, low membrane permeability, and rapid metabolic degradation, all of which compromise oral bioavailability and therapeutic efficacy. To address these challenges, lipid conjugation has emerged as a promising prodrug strategy that enhances pharmacokinetic properties, improves cellular uptake, and enables targeted delivery.
View Article and Find Full Text PDFACS Med Chem Lett
August 2025
Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
2-(Phosphonomethyl)pentanedioic acid (2-PMPA) is one of the most potent inhibitors of glutamate carboxypeptidase II (GCPII), a zinc metallopeptidase that cleaves glutamate from N-acetylaspartylglutamic acid and folylpoly-γ-glutamate. Due to the presence of multiple acidic groups, 2-PMPA exhibits poor oral bioavailability, limiting its therapeutic utility despite its potent GCPII inhibitory activity. One approach to address this challenge is to develop prodrugs of 2-PMPA with enhanced lipophilicity and improved oral absorption as demonstrated by tris-POC-2-PMPA and tetra-ODOL-2-PMPA.
View Article and Find Full Text PDFAntioxidants (Basel)
August 2025
Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.
One of the main limitations of photodynamic therapy (PDT) is hypoxia, which is caused by increased tumour proliferation creating a hypoxic tumour microenvironment (TME), as well as oxygen consumption by PDT. Hypoxia-activated prodrugs (HAPs), such as molecules containing aliphatic or aromatic -oxide functionalities, are non-toxic prodrugs that are activated in hypoxic regions, where they are reduced into their cytotoxic form. The (oxido)pyridylporphyrins tested in this work were synthesised as potential HAPs from their AB pyridylporphyrin precursors, using -chloroperbenzoic acid (-CPBA) as an oxidising reagent.
View Article and Find Full Text PDFDalton Trans
August 2025
Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy.
Platinum(IV) prodrugs offer a promising strategy to overcome the limitations of cisplatin and oxaliplatin, including systemic toxicity and acquired resistance. In this study, two novel α-tocopherol succinate-functionalized Pt(IV) complexes, [Pt(oxalato)(DACH)(OAc)(α-TOS)] (4) and [PtCl(NH)(OAc)(α-TOS)] (5), were synthesized and characterized to enhance the efficacy and selectivity of platinum-based chemotherapy. Functionalization with α-TOS (3) was designed to increase lipophilicity and enable selective intracellular reduction.
View Article and Find Full Text PDFEur J Pharm Biopharm
October 2025
Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy.
The carrier prodrug approach is a well-established medicinal chemistry strategy adopted to refine the physicochemical and biopharmaceutical properties of parent drugs. In the present work, this strategy was applied to improve the transdermal delivery of butyric acid (BA) by employing D-glucosamine (N-Glc), a natural and non-toxic molecule, as a carrier. Accordingly, the design and synthesis of a new carrier prodrug, N-glucosamine tetrabutyrate (3-amino-6-((butyryloxy)methyl)tetrahydro-2H-pyran-2,4,5-triyl tributyrate, N-Glc-BE) is reported.
View Article and Find Full Text PDF