98%
921
2 minutes
20
In clinical practice, about 35% of MRI scans are enhanced with Gadolinium - based contrast agents (GBCAs) worldwide currently. Injecting GBCAs can make the lesions much more visible on contrast-enhanced scans. However, the injection of GBCAs is high-risk, time-consuming, and expensive. Utilizing a generative model such as an adversarial network (GAN) to synthesize the contrast-enhanced MRI without injection of GBCAs becomes a very promising alternative method. Due to the different features of the lesions in contrast-enhanced images while the single-scale feature extraction capabilities of the traditional GAN, we propose a new generative model that a multi-scale strategy is used in the GAN to extract different scale features of the lesions. Moreover, an attention mechanism is also added in our model to learn important features automatically from all scales for better feature aggregation. We name our proposed network with an attention-based multi-scale contrasted-enhanced-image generative adversarial network (AMCGAN). We examine our proposed AMCGAN on a private dataset from 382 ankylosing spondylitis subjects. The result shows our proposed network can achieve state-of-the-art in both visual evaluations and quantitative evaluations than traditional adversarial training.Clinical Relevance-This study provides a safe, convenient, and inexpensive tool for the clinical practices to get contrast-enhanced MRI without injection of GBCAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC46164.2021.9630887 | DOI Listing |
Comput Methods Biomech Biomed Engin
September 2025
Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India.
Parkinson's disease (PD) is a neurodegenerative condition that impairs motor functions. Accurate and early diagnosis is essential for enhancing well-being and ensuring effective treatment. This study proposes a deep learning-based approach for PD detection using EEG signals.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
Background: Integrated mode proton imaging is a clinically accessible method for proton radiographs (pRads), but its spatial resolution is limited by multiple Coulomb scattering (MCS). As the amplitude of MCS decreases with increasing particle charge, heavier ions such as carbon ions produce radiographs with better resolution (cRads). Improving image resolution of pRads may thus be achieved by transferring individual proton pencil beam images to the equivalent carbon ion data using a trained image translation network.
View Article and Find Full Text PDFAm J Perinatol
September 2025
Division of Maternal and Fetal Medicine, OB/GYN and Women's Health Institute, Cleveland Clinic, Cleveland, Ohio, United States.
This study aimed to characterize the risk of adverse pregnancy outcomes among patients with congenital uterine anomalies (CUA) using electronic health record data.Retrospective cohort study utilizing the TriNetX analytics research network, including female patients aged 10 to 55 with a documented singleton and intrauterine pregnancy.A total of 561,440 patients met inclusion criteria, of whom 3,381 (0.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Department of Computer Science and Engineering, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India.
Deepfakes pose critical threats to digital media integrity and societal trust. This paper presents a hybrid deepfake detection framework combining Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs) to address challenges in scalability, generalizability, and adversarial robustness. The framework integrates adversarial training, a temporal decay analysis model, and multimodal detection across audio, video, and text domains.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 5735 S. Ellis Ave., SCL 123, Chicago, Illinois 60637, USA.
Molecular dynamics simulations are essential for studying complex molecular systems, but their high computational cost limits scalability. Coarse-grained (CG) models reduce this cost by simplifying the system, yet traditional approaches often fail to maintain dynamic consistency, compromising their reliability in kinetics-driven processes. Here, we introduce an adversarial training framework that aligns CG trajectory ensembles with all-atom (AA) reference dynamics, ensuring both thermodynamic and kinetic fidelity.
View Article and Find Full Text PDF