98%
921
2 minutes
20
The purpose of studies was to analyse an impact of heterogeneous nucleation of modified isotactic polypropylene (iPP) on its tribological properties. The iPP injection molded samples, produced by mold temperature of 20 and 70 °C, were modified with compositions of two nucleating agents (NA's), DMDBS creating α-form and mixture of pimelic acid with calcium stearate (PACS) forming β-phase of iPP, with a total content 0.2 wt.% of NA's. A polymorphic character of iPP, with both, monoclinic (α) and pseudo-hexagonal (β) crystalline structures, depending on the NA's ratio, was verified. The morphology observation, DSC, hardness and tribological measurements as test in reciprocating motion with "pin on flat" method, were realized, followed by microscopic observation (confocal and SEM) of the friction patch track. It was found that Shore hardness rises along with DMBDS content, independent on mold temperature. The friction coefficient (COF) depends on NA's content and forming temperature-for upper mold temperature (70 °C), its value is higher and more divergently related to NA's composition, what is not the case by 20 °C mold temperature. The height of friction scratches and the width of patch tracks due to its plastic deformation, as detected by confocal microscopy, are related to heterogeneous nucleation modified structure of iPP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659012 | PMC |
http://dx.doi.org/10.3390/ma14237462 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada.
The processes of thermoforming 2D-printed electronics into 3D structures can introduce defects that impact the electrical performance of conductors, making them more susceptible to thermal failure during high electrical power/current applications on temperature-sensitive substrates. We therefore report the use of a thin-film boron nitride nanotube (BNNT) interlayer to directly reduce heat stress on linear and serpentine metallic traces on polycarbonate substrates thermoformed to 3D spherocylindrical geometries at varying elongation percentages. We demonstrate that the BNNT interlayer helps to improve the electrical conductivity of highly elongated thermoformed 3D traces in comparison to traces on bare polycarbonate.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Food Engineering, Faculty of Engineering, Mersin University, Mersin, 33343, Turkey.
The spoilage of bulgur, characterized by a distinctive off-odor, poses a significant challenge to the bulgur industry, resulting in an annual production loss of 10 %. The tempering process plays a critical role to prevent this problem. This study investigated spoilage under high-moisture tempering conditions (15-27 % moisture, 25, 35 and 45 °C, 0-12 h), focusing on off-odor formation, volatile compounds and microbial activity.
View Article and Find Full Text PDFFood Res Int
November 2025
State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
This study investigated the effects of adding Saccharomycopsis fibuligera (SF) and Pichia kudriavzevii (PK) on microbial communities and flavor substances in industrial xiaoqu light-flavor baijiu production. The result showed that the highest acidity was found in the control group (CK: Saccharomyces cerevisiae and Rhizopus) at the end of fermentation. SF and PK promoted the growth of Rhizopus while decreasing the abundance of S.
View Article and Find Full Text PDFFood Res Int
November 2025
College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China. Electronic address:
High-temperature Daqu (HTD), an essential fermentation starter in sauce-aroma Baijiu, is characterized by complex microbial communities that vary significantly across production regions. Traditional HTD production faces challenges in consistency and quality control, hindering industrial scalability. This study compared 54 synthetic microbial communities (SynMC)-fortified HTD samples with 39 traditional HTD samples from core production regions, which are Renhuai, Luzhou, and Jinsha, respectively, to elucidate their microbial and metabolic profiles.
View Article and Find Full Text PDFAdv Biochem Eng Biotechnol
September 2025
Institute of Process Engineering in Life Sciences, Electrobiotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
While bioprocesses using Escherichia coli, Corynebacterium glutamicum, various species of Bacillus, lactic acid bacteria, Clostridia, the yeasts Saccharomyces cerevisiae and Pichia pastoris, fungi such as Aspergillus niger, and Chinese hamster ovary cells are well established, the high level of microbial diversity has not yet been exploited industrially. However, the use of alternative organisms has the potential to significantly expand the process window of bioprocesses. These extensions include the use of alternative substrates (e.
View Article and Find Full Text PDF