Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The adipokine Neuregulin 4 (Nrg4) protects against obesity-induced insulin resistance. Here, we analyze how the downregulation of Nrg4 influences insulin action and the underlying mechanisms in adipocytes. Validated shRNA lentiviral vectors were used to generate scramble (Scr) and Nrg4 knockdown (KD) 3T3-L1 adipocytes. Adipogenesis was unaffected in Nrg4 KD adipocytes, but there was a complete impairment of the insulin-induced 2-deoxyglucose uptake, which was likely the result of reduced insulin receptor and Glut4 protein. Downregulation of Nrg4 enhanced the expression of proinflammatory cytokines. Anti-inflammatory agents recovered the insulin receptor, but not Glut4, content. Proteins enriched in Glut4 storage vesicles such as the insulin-responsive aminopeptidase (IRAP) and Syntaxin-6 as well as TBC1D4, a protein involved in the intracellular retention of Glut4 vesicles, also decreased by Nrg4 KD. Insulin failed to reduce autophagy in Nrg4 KD adipocytes, observed by a minor effect on mTOR phosphorylation, at the time that proteins involved in autophagy such as LC3-II, Rab11, and Clathrin were markedly upregulated. The lysosomal activity inhibitor bafilomycin A1 restored Glut4, IRAP, Syntaxin-6, and TBC1D4 content to those found in control adipocytes. Our study reveals that Nrg4 preserves the insulin responsiveness by preventing inflammation and, in turn, benefits the insulin regulation of autophagy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8657571PMC
http://dx.doi.org/10.3390/ijms222312960DOI Listing

Publication Analysis

Top Keywords

insulin
8
insulin resistance
8
3t3-l1 adipocytes
8
glut4 vesicles
8
nrg4
8
downregulation nrg4
8
nrg4 adipocytes
8
insulin receptor
8
receptor glut4
8
irap syntaxin-6
8

Similar Publications

Effects of metformin on gut microbiota and short/mediumchain fatty acids in highfat diet rats.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University, Changsha 410013, China.

Objectives: Recent evidence suggests that the gut may be a primary site of metformin action. However, studies on the effects of metformin on gut microbiota remain limited, and its impact on gut microbial metabolites such as short-/medium-chain fatty acids is unclear. This study aims to investigate the effects of metformin on gut microbiota, short-/medium-chain fatty acids, and associated metabolic benefits in high-fat diet rats.

View Article and Find Full Text PDF

Background: High-dose insulin and euglycemic therapy are widely used to treat calcium channel blocker toxicity. However, the effect of insulin on vasodilation evoked by the dihydropyridine calcium channel blocker amlodipine remains unknown. This study examined the effect of insulin on amlodipine-induced vasodilation in isolated rat aortas with specific emphasis on mechanisms associated with nitric oxide (NO).

View Article and Find Full Text PDF

Aims: The estimated glucose disposal rate (eGDR) is a simple, non-invasive measure of insulin resistance. In this exploratory analysis of FINEARTS-HF, we evaluated whether lower eGDR, reflecting greater insulin resistance, is associated with adverse outcomes in heart failure (HF).

Methods And Results: The eGDR was calculated at baseline using waist circumference, glycated haemoglobin, and hypertension status.

View Article and Find Full Text PDF

Background: The long-term clinical efficacy of intraportal islet transplantation is hampered by islet loss due to inflammation, oxidative stress, and insufficient vascularization. This study explores the venous sac as an alternative implantation site for islet transplantation in large animal models.

Methods: An immunosuppressed, diabetic cynomolgus monkey received allogeneic islet implants in its mesenteric venous sac, with metabolic assessments over 112 days.

View Article and Find Full Text PDF

Background: The gut microbiota plays a vital role in various physiological processes, including metabolism. Fecal microbiota transplantation (FMT) involves transferring fecal matter from a healthy donor to rebalance a patient's intestinal dysbiosis. The impact of FMT on metabolic syndrome (MetS) is subject to debate.

View Article and Find Full Text PDF